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Abstract
This paper studies the relationship between the nuclear norm-regularized minimization prob-

lem, which minimizes the sum of a C2 function h and a positive multiple of the nuclear norm,
and its factorized problem obtained by the Burer-Monteiro technique. We first prove that every
second-order stationary point of the factorized problem corresponds to an approximate station-
ary point of its non-factorized counterpart, and those rank-deficient ones correspond to global
minimizers of the latter problem when h is additionally convex, conforming with the obser-
vations in [2, 15]. Next, discarding the rank condition on the second-order stationary points
but assuming the convexity and Lipschitz differentiability of h, we characterize, with respect to
some natural problem parameters, when every second-order stationary point of the factorized
problem is a global minimizer of the corresponding nuclear norm-regularized problem. More
precisely, we subdivide the class of Lipschitz differentiable convex C2 functions into subclasses
according to those natural parameters and characterize when each subclass consists solely of
functions h such that every second-order stationary point of the associated factorized model is a
global minimizer of the nuclear norm regularized model. In particular, explicit counterexamples
are established when the characterizing condition on the said parameters is violated.

1 Introduction

Low-rank matrix estimation has been an extremely important and versatile problem that has
attracted intense research over the last two decades and found many applications across a wide
range of domains, such as network science [12], machine learning [11, 26], quantum physics [22],
control [25] and imaging [43, 13], to name a few. Natural formulations of the problem include the
rank-constrained minimization problem (e.g., see [21, 46]):

min
X∈Rm×n

h(X)

s.t. rank(X) ≤ r,
(1.1)

the constrained rank minimization problem (e.g., see [8, 39]):

min
X∈Rm×n

rank(X)

s.t. h(X) ≤ c,
(1.2)

*Columbia University, New York, USA (wo2205@columbia.edu).
�The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China (tk.pong@polyu.edu.hk). The

research of this author was partially supported by the Hong Kong Research Grants Council PolyU153001/22p and
the PolyU internal grant 4-ZZPJ.

�The University of Hong Kong, Hong Kong, People’s Republic of China (mcyue@hku.hk). The research of this
author was partially supported by the Hong Kong Research Grants Council under the GRF project 17309423.

1



or the rank-regularized minimization problem (e.g., see [23, 20]):

min
X∈Rm×n

h(X) + λ · rank(X). (1.3)

In the above formulations, r, c, λ > 0 are constants prescribed by the modelers and h is a function
representing the misfit between the output predicted by X and the true observations.

Unfortunately, due to the non-convexity and combinatorial nature of the rank function, the
optimization problems (1.1), (1.2) and (1.3) are difficult to solve in general. For computational
tractability, many convex and non-convex surrogates were proposed [33, 35, 27, 39]. This paper
focuses on the following surrogate:

min
X∈Rm×n

f(X) := h(X) + λ∥X∥∗, (1.4)

where h is assumed to be twice continuously differentiable for the theoretical analysis, λ > 0, and
∥ · ∥∗ denotes the nuclear norm. Problem (1.4) can be seen as an approximation to problem (1.3).
Indeed, it was shown that the nuclear norm is the convex envelope of the rank function [8]. The
upshot of problem (1.4) is that it is in the form of the so-called composite minimization that has
been heavily studied in the literature, especially when h is convex. Therefore, in principle it can
be solved by many existing algorithms for composite minimization, including in particular various
proximal algorithms [31, 18, 38, 40] in view of the closed-form expression of the proximal operator
of the nuclear norm [7].

Nonetheless, in contemporary applications, the dimensionsm and n of the decision variableX can
potentially be extremely high, rendering existing methods inapplicable. For example, in collaborative
filtering, which is a classical application of low-rank matrix estimation, the dimensionsm and n could
be of the order of millions or even higher [26]. Worse still, the computational cost of the proximal
operator associated with the nuclear norm, which is a fundamental building block of many existing
algorithms for solving problem (1.4), is a cubic function in m and n, as it involves the singular
value decomposition of X. To circumvent this, researchers proposed to solve problem (1.4) via the
Burer-Monteiro factorization technique [5, 6, 32, 46, 44], which replaces the variable X by a low-rank
approximation UV ⊤ and solves the resulting problem:

min
U∈Rm×r,V ∈Rn×r

Fr(U, V ) := h(UV ⊤) +
λ(∥U∥2F + ∥V ∥2F )

2
, (1.5)

where ∥·∥F denotes the Frobenius norm and r is an integer parameter specified by the modeler. Any
optimal solution (U∗, V ∗) of problem (1.5) corresponds to an approximately optimal solution U∗V ∗⊤

to problem (1.4). The advantage of the factorized problem (1.5) over problem (1.4) is twofold. First,
the objective function in the factorized problem (1.5) is differentiable as soon as h is. In contrast,
the objective function in problem (1.4) is nonsmooth because of the nuclear norm. Second, we often
choose r ≪ min{m,n} in practice. The total size r(m+n) of the matrix variables (U, V ) is therefore
substantially smaller than the size mn of the variable X in the non-factorized counterpart (1.4).

Since our goal is to solve problem (1.4), the factorization rank r cannot be too small. Indeed,
optimal solutions of problem (1.4) cannot be recovered by solving problem (1.5) through the cor-
respondence (U, V ) 7→ UV ⊤ if r is less than the minimum rank r∗ of the optimal solutions of
problem (1.4). This issue is currently addressed indirectly as follows. First, it can be readily shown
that U∗V ∗⊤ is a global minimizer of problem (1.4) for any global minimizer (U∗, V ∗) of problem (1.5)
if r ≥ r∗ (e.g., see [16, Lemma 1]). Second, despite the non-convexity due to the bilinear term UV ⊤,
the factorized problem (1.5) has no spurious local minimizers or second-order stationary points if r
is sufficiently large [19, 44], which implies that one can actually solve problem (1.4) with a convex h
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by using any optimization algorithm with a second-order convergence guarantee on problem (1.5).
However, a proper choice of the parameter r is highly nontrivial. In particular, as demonstrated by
an example constructed in [44], merely having r ≥ r∗ is not enough in general, let alone that the
minimum solution rank r∗ is often unknown in practice. Our paper also revolves around the choice
of the factorization rank r by asking a different but more direct question:

When do all the second-order stationary points of problem (1.5) correspond to
the global minimizers of problem (1.4) via the mapping (U, V ) 7→ UV ⊤?

This motivates the following definition.

Definition 1.1 (r-factorizability). Let h be twice continuously differentiable. The function f in
problem (1.4) is said to be r-factorizable if every second-order stationary point (U, V ) of the function
Fr in problem (1.5) satisfies that UV ⊤ is a global minimizer of f .

With this definition, our problem is equivalent to the investigation of the r-factorizability of the
objective function f of problem (1.4).

Most of the existing works on this question focus on the unregularized counterpart:

min
U∈Rm×r,V ∈Rn×r

h(UV ⊤), (1.6)

and rely on the restricted isometry property of h. Here, we recall that for δ > 0 and integers
s, t ≥ 0, a twice continuously differentiable function h : Rm×n → R is said to satisfy δ-RIPs,t

condition [19, 45, 42] if for all X,H ∈ Rm×n with rank(X) ≤ s and rank(H) ≤ t, it holds that

(1− δ)∥H∥2F ≤ ∇2h(X)[H,H] ≤ (1 + δ)∥H∥2F .

The state-of-the-art results were established in [42, Corollary 2], which showed that all second-order
stationary points of problem (1.6) are global minimizers of problem (1.6) if h satisfies the 1

3 -RIP2r,2r

condition and that there exists a function h satisfying the 1
2 -RIP2r,2r condition but possessing

a spurious second-order stationary point. Other theoretical results can be found in [10, 9, 46].
Interestingly, the question about the choice of the factorization rank r has also been investigated
in the symmetric case, where the non-factorized and factorized problems are to minimize h(X) and
h(UU⊤), respectively, where X is a symmetric positive semidefinite matrix. In the special case of
semidefinite programming, it has been resolved rather satisfactorily [3, 4, 29].

For asymmetric, regularized problem (1.4), fewer works have been done. A common assumption
in these works is that there exists an optimal solution to problem (1.4) and r is chosen to be at least
the minimum solution rank r∗. In [24, Theorem 3], the author showed that if h is convex quadratic
and satisfies the δ-RIP2r,2r condition with δ < 1

3 , then the corresponding f in problem (1.4) is
r-factorizable. A similar result was established in [19, Theorem 2] for a general twice continuously
differentiable convex function h with a more restrictive bound on δ. Later, in [15, Theorem 1],1 it
was shown that when h satisfies the δ-RIP2r,2r condition with δ < 1

3 , then the corresponding f in
problem (1.4) is r-factorizable, and when δ ≥ 1

3 , a second-order stationary point of problem (1.5)
corresponds to an approximate stationary point of problem (1.4). Notice that all these results
rely on RIP-type conditions. It remains unclear whether these conditions are necessary for the
r-factorizability. It is also worth mentioning that verifying RIP-type conditions is NP-hard [37].

1The results in [15] were stated in terms of restricted strong convexity and restricted smoothness. The moduli α
and β therein correspond to 1− δ and 1 + δ in our discussion here, respectively.
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Unlike most of the existing works, we do not invoke any RIP-type assumptions. The work closest
to our non-RIP approach is [44], which considered the following pair of optimization problems:

min
X∈Sn+

h(X) and min
U∈Rn×r

h̃(U) := h(UU⊤) (1.7)

where Sn+ is the set of n × n symmetric matrices and h is C2, Lipschitz differentiable and strongly

convex, and showed that all second-order stationary points U∗ of h̃ satisfy that U∗U∗⊤ is the
unique minimizer X∗ of h over Sn+ under suitable conditions on the factorization rank r, solution
rank rank(X∗) and the condition number κ (i.e., the ratio between the Lipschitz constant of ∇h and
the strong convexity modulus of h), namely (1) r ≥ rank(X∗) and κ < 3; or (2) n > r ≥ rank(X∗)

and r > 1
4 (κ− 1)2rank(X∗); the author also constructed a function h with κ = 3 such that h̃ has a

second-order stationary point that does not correspond to any global minimizer of h over Sn+. Our
work can be seen as an extension of the studies in [44] to the asymmetric, regularized case, and is
more general in the sense that we consider not only strongly but also non-strongly convex h. More
precisely, instead of the problem pairs (1.7), we focus on the problems (1.4) and (1.5) and study the
r-factorizability of f in connection with a set of natural problem parameters, including the condition
number κ of h, the Lipschitz constant of ∇h, the solution rank of problem (1.4) and the rank of a
second-order stationary point of (1.5).

We now summarize our technical contributions. First, we prove that every second-order station-
ary point of problem (1.5) corresponds to an approximate stationary point of problem (1.4) via the
mapping (U, V ) 7→ UV ⊤. In particular, when the second-order stationary point is rank-deficient,
it corresponds to a stationary point of problem (1.4), which is in accordance with the findings of
[2, 15]. Consequently, if all second-order stationary points of problem (1.5) are rank-deficient and h is
convex, then f is r-factorizable. Next, discarding the rank condition on the second-order stationary
points but assuming the convexity and Lipschitz differentiability of h, we characterize, with respect
to some natural problem parameters, when every second-order stationary point of the factorized
problem (1.5) is a global minimizer of non-factorized problem (1.4). More precisely, we subdivide
the class of Lipschitz differentiable convex C2 functions into subclasses according to those natu-
ral parameters and characterize when each subclass consists solely of functions h such that every
second-order stationary point of problem (1.5) is a global minimizer of problem (1.4). Furthermore,
explicit counterexamples are established when the characterizing condition on the said parameters
is violated. To our knowledge, our results are the first characterizations of r-factorizability in terms
of these natural parameters.

The remainder of the paper is organized as follows. In Section 2, we define the notation and
prepare some preliminary results. The characterization of first- and second-order stationary points of
problem (1.5) is presented in Section 3. We show that second-order stationary points of problem (1.5)
correspond to approximate stationary points of problem (1.4) in Section 4. In Section 5, we derive
the characterization of the r-factorizability of the objective function f in problem (1.4).

2 Notation and preliminaries

Throughout this paper, we assume that 1 ≤ r ≤ m ≤ n in problem (1.5). For a matrix
X ∈ Rm×n, we let ∥X∥∗, ∥X∥2 and ∥X∥F denote its nuclear norm, spectral norm and Frobenius
norm, respectively. The i-th largest singular value of X is denoted by σi(X) for i = 1, . . . ,m. The

vector of singular values is denoted by σ(X) =
[
σ1(X) · · · σm(X)

]⊤
. The set of n×n orthogonal

matrices is denoted by On. For x ∈ Rs, we denote by Diag(x) ∈ Rs×s the diagonal matrix with
(Diag(x))ii = xi for i = 1, . . . , s. Moreover, we define diag : Rs×s → Rs to be the adjoint operator of
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Diag. In this paper, to simplify the presentation, we also use D̃iag and d̃iag to denote the possibly

non-square versions of Diag and diag, respectively. Specifically, for x ∈ Rs, D̃iag(x) would be a

diagonal matrix whose diagonal part is x, which is not necessarily square; the dimension of D̃iag(x)
is omitted when it can be understood from the context.2 Also, for X = [X1 X2] ∈ Rm×n with

X1 ∈ Rm×m and X2 ∈ Rm×(n−m), we define d̃iag(X) = diag(X1) ∈ Rm. For X ∈ Rm×n, we define

OX = {(R,P ) ∈ Om ×On : R D̃iag(σ(X))P⊤ = X}.

For a mapping H : Rm×n → Rm×n, we say H is Lipschitz continuous with modulus L if the
following holds:

∥H(X)−H(Y )∥F ≤ L∥X − Y ∥F ∀X,Y ∈ Rm×n.

The strong convexity for an h ∈ C2(Rm×n) is also defined with respect to the Frobenius norm.
Namely, h ∈ C2(Rm×n) is said to be µ-strongly convex if ∇2h(X)[Y, Y ] ≥ µ∥Y ∥2F for all X,Y ∈
Rm×n, where the Hessian ∇2h(X) : Rm×n × Rm×n → R is regarded as a quadratic form on Rm×n.
To avoid clutter, we sometimes use the notation ∇2h(X)[Y ]2 to denote ∇2h(X)[Y, Y ].

The set of nonnegative integers is denoted by N0. For a nonnegative integer r, we use [r] to
denote the set {1, . . . , r}; in particular, [0] := ∅. The permutation group of order m is denoted by
Pm, and the set of m×m permutation matrices is denoted by Pm. Finally, for an x ∈ R, we let ⌊x⌋
denote the largest integer upper bounded by x.

We will need the following characterization of the subdifferential of the nuclear norm.

Proposition 2.1 ([36, Example 2]). Let X ∈ Rm×n be a matrix of rank s and (R,P ) ∈ OX . Then,

∂∥X∥∗ =

{
R

[
I 0
0 W

]
P⊤ : W ∈ R(m−s)×(n−s), ∥W∥2 ≤ 1

}
.

Note that while the singular value decomposition of X is not unique, the subdifferential ∂∥X∥∗
is independent of the choice of the singular value decomposition.

Before ending this section, we present a variant of von Neumann’s trace inequality. Its proof
requires the following well-known result concerning doubly stochastic matrices.

Lemma 2.2. Let A ∈ Rm×m be a nonnegative matrix that satisfies

∀i ∈ [m],

m∑
j=1

Aij ≤ 1,

m∑
j=1

Aji ≤ 1.

Then, there exists a doubly stochastic matrix B such that Bij ≥ Aij for all i and j.

Proof. Let R and C be the sets consisting of the indices of the rows and columns of A whose sum is
less than 1, respectively. Clearly, R and C must be simultaneously empty or nonempty. We modify
the matrix A gradually in the following manner: at each step, we select i ∈ R and j ∈ C, and
enlarge Aij until either the row sum of i-th row or the column sum of j-th column reaches 1. Then
we update R and C and repeat this process. Since R and C are always simultaneously empty or
nonempty, our algorithm is well defined. Moreover, after each step, the quantity |R|+ |C| is reduced
by at least 1. Since this number is finite, we must end with R = C = ∅. Then the resulting matrix,
denoted by B, is doubly stochastic, and it holds by construction that Bij ≥ Aij for all i and j.

2For example, if R ∈ Rm×m and P ∈ Rn×n, then writing R D̃iag(x)P⊤ would imply that D̃iag(x) ∈ Rm×n.
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Below is the announced variant of von Neumann’s trace inequality, which reduces to the classical
von Neumann’s inequality when C or D is a zero matrix.

Lemma 2.3. Let A, B, C and D be nonnegative m ×m diagonal matrices with diagonal vectors
dA, dB, dC and dD, respectively. Then, we have

sup
R∈Om,P∈On

tr(R
[
A 0

]
P

[
B
0

]
) + tr(R

[
C 0

]
P

[
D
0

]
) = max

E∈Pm

(dA)⊤EdB + (dC)⊤E(dD), (2.1)

where Pm is the set of m×m permutation matrices.

Proof. For any R ∈ Om and P ∈ On, we have

tr(R
[
A 0

]
P

[
B
0

]
) + tr(R

[
C 0

]
P

[
D
0

]
)

=

m∑
i,j=1

(dAi d
B
j + dCi d

D
j )PijRji ≤

m∑
i,j=1

(dAi d
B
j + dCi d

D
j )(

R2
ji

2
+

P 2
ij

2
)

(a)
=

m∑
i,j=1

(dAi d
B
j + dCi d

D
j )Zij = (dA)⊤ZdB + (dC)⊤ZdD,

where in (a) we define Z ∈ Rm×m such that Zij =
R2

ji

2 +
P 2

ij

2 for all i and j. Since R ∈ Om and
P ∈ On, we see that all row sums and column sums of Z are at most 1. By Theorem 2.2, we know
there is a doubly stochastic matrix Y such that Yij ≥ Zij for all i and j. Since dA, dB , dC , dD are
all nonnegative, we have

(dA)⊤ZdB + (dC)⊤ZdD ≤ (dA)⊤Y dB + (dC)⊤Y dD.

Applying Birkhoff theorem (see, e.g., [1, Theorem 1.2.5]), the matrix Y is a convex combination of
permutation matrices, namely, Y =

∑s
i=1 λiPi, where Pi ∈ Pm, λi ≥ 0 for each i = 1, . . . , s with∑s

i=1 λi = 1. Therefore, we see that

(dA)⊤Y dB + (dC)⊤Y dD = λi

s∑
i=1

(dA)⊤Pid
B + (dC)⊤Pid

D ≤ sup
E∈Pm

(dA)⊤EdB + (dC)⊤E(dD).

This upper bound can be achieved by setting R = E⊤
∗ and P =

[
E∗ 0
0 In−m

]
∈ Rn×n, where E∗

achieves the supremum in supE∈Pm
(dA)⊤EdB + (dC)⊤E(dD).

3 First- and second-order stationary points of Fr

In this section, we present characterizations of first- and second-order stationary points of Fr in
problem (1.5), which will be useful for our study of r-factorizability in subsequent sections.

Lemma 3.1. Let V ∈ Rn×r and U ∈ Rm×r. Then, U⊤U = V ⊤V if and only if σ(V ) = σ(U) and
for any (P,Q) ∈ OV there exists R such that (R,Q) ∈ OU .
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Proof. To prove the “if” direction, we note that by the definitions of OV and OU , P D̃iag(σ(V ))Q⊤

and RD̃iag(σ(U))Q⊤ are singular value decompositions of V and U , respectively. Then,

U⊤U = QD̃iag(σ(U))⊤R⊤RD̃iag(σ(U))Q⊤ = QD̃iag(σ(U))⊤D̃iag(σ(U))Q⊤

=QD̃iag(σ(V ))⊤D̃iag(σ(V ))Q⊤ = QD̃iag(σ(V ))⊤P⊤P D̃iag(σ(V ))Q⊤ = V ⊤V.

We next prove the “only if” direction. Suppose that U⊤U = V ⊤V . The equality σ(U) = σ(V )
follows directly from the definition of singular values. For the remaining assertion, let (P,Q) ∈ OV .

Then, V = P D̃iag(σ(V ))Q⊤ is a singular value decomposition. By the supposition U⊤U = V ⊤V ,

Q⊤U⊤UQ = Q⊤V ⊤V Q = Q⊤(P D̃iag(σ(V ))Q⊤)⊤(P D̃iag(σ(V ))Q⊤)Q

= Diag(σ2
1(V ), . . . , σ2

s(V ), 0, . . . , 0),
(3.1)

where s := rank(V ) and hence σ1(V ), . . . , σs(V ) > 0. Denote by ûi the i-th column of UQ for
i ∈ [m]. It then follows from (3.1) that the vectors û1/σ1(V ), . . . , ûs/σs(V ) are orthonormal and
that ûi = 0 for i = s + 1, . . . ,m. There must exist m − s vectors rs+1, . . . , rm so that R =
[û1/σ1(V ), . . . , ûs/σs(V ), rs+1, . . . , rm] ∈ Om. By the definition of R and the fact that σ(V ) = σ(U),
we have

RD̃iag(σ(U))Q⊤ = [û1/σ1(V ), . . . , ûs/σs(V ), rs+1, . . . , rm] D̃iag(σ1(V ), . . . , σs(V ), 0, . . . , 0)Q⊤

= [û1, . . . , ûs, 0, . . . , 0]Q
⊤ = UQQ⊤ = U,

which implies that (R,Q) ∈ OU and thus completes the proof.

Proposition 3.2 (First-order stationarity). A pair (U, V ) ∈ Rm×r×Rn×r is a stationary point of Fr

in (1.5) if and only if there exist R ∈ Om, P ∈ On and Q ∈ Or such that (R,Q) ∈ OU , (P,Q) ∈ OV ,

σ(U) = σ(V ), and ∇h(UV ⊤) = −R D̃iag(d)P⊤ for some d ∈ Rm satisfying d1 = · · · = ds = λ and
ds+1 ≥ · · · ≥ dm ≥ 0, where s = rank(U) = rank(V ).

Remark 3.3. (i) Note that the decomposition −∇h(UV ⊤) = R D̃iag(d)P⊤ in Theorem 3.2 is
not a singular value decomposition in general because it is possible that ds+1 > λ = d1 =
· · · = ds. Nevertheless, the vector d contains all the singular values of −∇h(UV ⊤), i.e., d is
σ(−∇h(UV ⊤)) up to a permutation of the entries.

(ii) For a stationary point (U, V ) of Fr, Theorem 3.2 shows that rank(U) = rank(V ) and UV ⊤ =

R[D̃iag(σ(U))]2P⊤ = R[D̃iag(σ(V ))]2P⊤ for some R ∈ Om and P ∈ On. Hence, σi(UV ⊤) =
σ2
i (U) = σ2

i (V ) for all i ∈ [m].

Proof of Theorem 3.2. The first-order optimality condition of problem (1.5) reads{
∇h(UV ⊤)V + λU = 0,

∇h(UV ⊤)⊤U + λV = 0.
(3.2)

We first prove the “if” direction. By supposition, we have that

∇h(UV ⊤)V + λU = −RD̃iag(d)P⊤P D̃iag(σ(V ))Q⊤ + λRD̃iag(σ(U))Q⊤

= −RD̃iag(d)P⊤P D̃iag(σ(U))Q⊤ + λRD̃iag(σ(U))Q⊤
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= −R

[
λIs 0

0 D̃iag(ds+1, . . . , dm)

] [
Diag(σ1(U), . . . , σs(U)) 0

0 0

]
Q⊤ + λRD̃iag(σ(U))Q⊤

= − λRD̃iag(σ(U))Q⊤ + λRD̃iag(σ(U))Q⊤ = 0,

which shows the first equality in (3.2). Similarly, we have

∇h(UV ⊤)⊤U + λV = −P D̃iag(d)R⊤RD̃iag(σ(U))Q⊤ + λP D̃iag(σ(V ))Q⊤

= − P D̃iag(d)R⊤RD̃iag(σ(V ))Q⊤ + λP D̃iag(σ(V ))Q⊤

= − P

[
λIs 0

0 D̃iag(ds+1, . . . , dm)

] [
Diag(σ1(V ), . . . , σs(V )) 0

0 0

]
Q⊤ + λP D̃iag(σ(V ))Q⊤

= − λP D̃iag(σ(V ))Q⊤ + λP D̃iag(σ(V ))Q⊤ = 0,

which shows the second equality in (3.2). This proves the “if” direction.
To prove the “only if” direction, we assume that (U, V ) is a stationary point of Fr in (1.5),

i.e., (3.2) holds. It then follows from [19, Proposition 2] that U⊤U = V ⊤V . Fix a singular value
decomposition of V :

V = P1

[
Diag(σ1(V ), . . . , σs(V )) 0

0 0

]
Q⊤

1 . (3.3)

By Theorem 3.1, there exists some R1 ∈ Om such that

U = R1

[
Diag(σ1(V ), . . . , σs(V )) 0

0 0

]
Q⊤

1 . (3.4)

Next, we write

∇h(UV ⊤) = R1

[
A B
C D

]
P⊤
1 , (3.5)

for some A ∈ Rs×s, B ∈ Rs×(n−s), C ∈ R(m−s)×s, D ∈ R(m−s)×(n−s). Substituting (3.3), (3.4) and
(3.5) into (3.2), we get

ADiag(σ1(V ), . . . , σs(V )) + λDiag(σ1(V ), . . . , σs(V )) = 0,

C Diag(σ1(V ), . . . , σs(V )) = 0,

A⊤ Diag(σ1(V ), . . . , σs(V )) + λDiag(σ1(V ), . . . , σs(V )) = 0,

B⊤ Diag(σ1(V ), . . . , σs(V )) = 0,

which imply that B = C = 0, A = −λIs and D is unconstrained.
Finally, let (R2, P2) ∈ O−D and define the following orthogonal matrices

P = P1

[
Is 0
0 P2

]
and R = R1

[
Is 0
0 R2

]
.

Using (3.3) and (3.4), one can check readily that (P,Q1) ∈ OV and (R,Q1) ∈ OU . Moreover, using
(3.5) together with the facts that B = C = 0 and A = −λIs, we see that

∇h(UV ⊤) = −R1

[
λIs 0
0 −D

]
P⊤
1 = −R

[
λIs 0

0 D̃iag(σ(−D))

]
P⊤.

This completes the proof.
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We next establish an equivalent characterization of second-order stationary points of Fr in (1.5).
We start by introducing a useful way to partition matrices. Let (Ū , V̄ ) ∈ Rm×r × Rn×r satisfy
rank(Ū) = rank(V̄ ) (which holds in particular when (Ū , V̄ ) is a stationary point of Fr, thanks to
Theorem 3.2). Denote this common rank by s = rank(Ū) = rank(V̄ ) ≤ r. We can then partition
any matrices U ∈ Rm×r and V ∈ Rn×r into the following block form:

U =

[
U11 U12

U21 U22

]
and V =

[
V11 V12

V21 V22

]
, (3.6)

where U11, V11 ∈ Rs×s, U12, V12 ∈ Rs×(r−s), U21 ∈ R(m−s)×s, V21 ∈ R(n−s)×s, U22 ∈ R(m−s)×(r−s),
V22 ∈ R(n−s)×(r−s). Note that when Ū and V̄ are of full rank, i.e., s = r, the matrices U12, U22, V12

and V22 are null.

Proposition 3.4 (Second-order stationarity). A pair (Ū , V̄ ) ∈ Rm×r × Rn×r is a second-order
stationary point of Fr in (1.5) if and only if both of the following two conditions hold:

(i) There exist R ∈ Om, P ∈ On and Q ∈ Or such that (R,Q) ∈ OŪ , (P,Q) ∈ OV̄ , σ(Ū) = σ(V̄ )

and ∇h(Ū V̄ ⊤) = −R D̃iag(d)P⊤ for some d ∈ Rm satisfying d1 = · · · = ds = λ and ds+1 ≥
· · · ≥ dm ≥ 0, where s = rank(Ū) = rank(V̄ ).

(ii) For any U ∈ Rm×r and V ∈ Rn×r, it holds that3

− 2λtr(U⊤
11V11 + U12V

⊤
12)− 2tr(D⊤(U21V

⊤
21 + U22V

⊤
22))

+ λ(∥U∥2F + ∥V ∥2F ) +∇2h(Ū V̄ ⊤)

[
R

[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]
P⊤

]2
≥ 0,

(3.7)

where Σ = Diag(σ1(Ū), . . . , σs(Ū)) ∈ Rs×s, and D = D̃iag(ds+1, . . . , dm) ∈ R(m−s)×(n−s) with
di given in Item (i).

Moreover, if s = rank(Ū) < r, then Item (i) and Item (ii) imply that ∥∇h(Ū V̄ ⊤)∥2 ≤ λ.

Proof. A pair (Ū , V̄ ) ∈ Rm×r×Rn×r is a second-order stationary point of Fr if and only if it satisfies
both the first- and second-order optimality conditions. By Theorem 3.2, the first-order optimality
condition is equivalent to Item (i).

We now reformulate the second-order optimality condition: ∇2Fr(Ū , V̄ )[(U, V ), (U, V )] ≥ 0 for
all (U, V ) ∈ Rm×r × Rn×r. Let R ∈ Om, P ∈ On and Q ∈ Or be orthogonal matrices given in
Item (i). Since (U, V ) 7→ (RUQ⊤, PV Q⊤) is a bijective linear map on Rm×r×Rn×r, the condition is
equivalent to that∇2Fr(Ū , V̄ )[(RUQ⊤, PV Q⊤), (RUQ⊤, PV Q⊤)] ≥ 0 for all (U, V ) ∈ Rm×r×Rn×r.
Denoting X̄ = Ū V̄ ⊤ and using [19, Equation (3.14)], we have that

∇2Fr(Ū , V̄ )[(RUQ⊤, PV Q⊤), (RUQ⊤, PV Q⊤)]

= 2⟨R⊤∇h(X̄)P,UV ⊤⟩+ λ(∥U∥2F + ∥V ∥2F ) +∇2h(X̄)[ŪQV ⊤P⊤ +RUQ⊤V̄ ⊤]2.

The second-order condition is therefore further equivalent to that for all (U, V ) ∈ Rm×r × Rn×r,

2⟨R⊤∇h(X̄)P,UV ⊤⟩+ λ(∥U∥2F + ∥V ∥2F ) +∇2h(X̄)[ŪQV ⊤P⊤ +RUQ⊤V̄ ⊤]2 ≥ 0

(a)⇐⇒ − 2

〈[
λIs 0
0 D

]
, UV ⊤

〉
+ λ(∥U∥2F + ∥V ∥2F )

3Here, we use the partition (3.6) with respect to (Ū , V̄ ); this is well defined because σ(Ū) = σ(V̄ ) holds in Item (i).
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+∇2h(X̄)

[
R

([
Σ 0
0 0

]
V ⊤ + U

[
Σ 0
0 0

])
P⊤

]2
≥ 0 (3.8)

(b)⇐⇒ − 2λtr(U11V
⊤
11 + U12V

⊤
12)− 2tr(D⊤(U21V

⊤
21 + U22V

⊤
22))

+ λ(∥U∥2F + ∥V ∥2F ) +∇2h(X̄)

[
R

[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]
P⊤

]2
≥ 0, (3.9)

where (a) follows from the decomposition for −∇h(X̄) in Item (i) and the definition of D and Σ,
and (b) from the definition of the blocks in (3.6). This shows that Item (i) and Item (ii) together
form an equivalent characterization of the second-order stationary points.

We next prove the second claim under the additional assumption of s = rank(Ū) < r. Note that
this implies that U22 and V22 are not null. Hence, we can take U and V in (3.7) to be the matrices
with the blocks U22 = [e1 0] and V22 = [e1 0] and U11, U12, U21, V11, V12, V21 all being zero matrices
to deduce that

−2σ1(D) + 2λ ≥ 0.

The desired conclusion now follows immediately from the above display and the decomposition of
∇h(Ū V̄ ⊤) in Item (i).

4 Approximate stationary points of f

Recall that our ultimate goal is to solve problem (1.4) to global optimality. Problem (1.5) is
only a surrogate that is computationally more friendly. In practice, it is customary to invoke a first-
or second-order optimization algorithm to solve problem (1.5), which often returns a second-order
stationary point [17, 30]. A natural question is therefore when the second-order stationary points
(U, V ) of Fr in (1.5) correspond to the global optima of problem (1.4), through the correspondence
(U, V ) 7→ UV ⊤. In general, a second-order stationary point of problem (1.5) may not even correspond
to a stationary point of problem (1.4). To see this, suppose that h in (1.4) is a strongly convex
function, which implies that f(·) = h(·)+λ∥ · ∥∗ is also strongly convex and hence problem (1.4) has
a unique stationary point X∗. Assume that rank(X∗) > 1 and pick r < rank(X∗). Then, Fr is the
sum of the level-bounded function (U, V ) 7→ λ

2 (∥U∥
2
F + ∥V ∥2F ) and the function (U, V ) 7→ h(UV ⊤),

which is lower bounded due to the strong convexity of h. Consequently, the objective function
Fr is level-bounded, and problem (1.5) must have a global minimizer (Ū , V̄ ). However, Ū V̄ ⊤ is
not a stationary point of f , since rank(Ū V̄ ⊤) ≤ r < rank(X∗). Although in general second-order
stationary points of Fr do not correspond to a stationary point of f in (1.4), we show that they
correspond to an approximate stationary point of f . A similar result was obtained in [15, Theorem
1] under the restricted isometry property.

Theorem 4.1 (Approximate stationary points). Let (Ū , V̄ ) ∈ Rm×r × Rn×r be a second-order
stationary point of Fr in (1.5), s = rank(Ū) and d ∈ Rm be given in Proposition 3.4. Then,4

ds+1 ≤ λ+ Lσr(Ū V̄ ⊤), where

L = sup
Y ∈Rm×n, ∥Y ∥F=1,

rank(Y )=2

∇2h(Ū V̄ ⊤)[Y, Y ].

Furthermore, infY ∈∂f(ŪV̄ ⊤) ∥Y ∥2 ≤ Lσr(Ū V̄ ⊤).

4We define dm+1 = 0.
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Proof. We first consider the case when rank(Ū) < r. Since rank(Ū) < r, we have σr(Ū V̄ ⊤) = 0.
Therefore,

ds+1 ≤ ∥d∥∞ = ∥∇h(Ū V̄ ⊤)∥2 ≤ λ = λ+ Lσr(Ū V̄ ⊤),

where the first equality follows from Theorem 3.3(i) and the second inequality follows from Theo-
rem 3.4. Therefore, we have

− 1

λ
∇h(Ū V̄ ⊤) = RD̃iag(1, . . . , 1, ds+1/λ, . . . , dm/λ)P⊤ ∈ ∂∥Ū V̄ ⊤∥∗,

where the inclusion follows from Theorem 2.1 and the fact that 0 ≤ dm ≤ · · · ≤ ds+1 ≤ λ. This
proves 0 ∈ ∂f(Ū V̄ ⊤), and hence 0 = infY ∈∂f(ŪV̄ ⊤) ∥Y ∥2 ≤ Lσr(Ū V̄ ⊤) = 0.

We next consider the case where rank(Ū) = r. If r = m, then dm+1 = 0; moreover, we have d1 =
· · · = dm = λ from Theorem 3.4, which implies (as in the above display) that infY ∈∂f(ŪV̄ ⊤) ∥Y ∥2 = 0.
The desired conclusions then hold trivially. Thus, from now on, we assume r < m.

By Theorem 3.2, rank(V̄ ) = rank(Ū) = r. Therefore, in this case, the blocks U12, U22, V12, V22

in (3.6) are null. Since (Ū , V̄ ) is a second-order stationary point of Fr in (1.5), by Theorem 3.4, it
satisfies the following inequality for any matrices U ∈ Rm×r and V ∈ Rn×r:

0 ≤− 2λtr(U⊤
11V11)− 2tr(D⊤U21V

⊤
21) + λ(∥U∥2F + ∥V ∥2F )

+∇2h(Ū V̄ ⊤)

[
R

[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0(m−r)×(n−r)

]
P⊤

]2
.

(4.1)

Taking U and V to be the matrices with U11 and V11 being zero and U21 = [er 0]
⊤ = e1e

⊤
r ∈ R(m−r)×r

and V21 = [er 0]⊤ = e1e
⊤
r ∈ R(n−r)×r, we have that ΣV ⊤

21 = σr(Ū)ere
⊤
1 and U21Σ = σr(Ū)e1e

⊤
r and

that tr(D⊤U21V
⊤
21) = e⊤1 De1 = dr+1. Substituting these into (4.1) yields

0 ≤ −2dr+1 + 2λ+∇2h(Ū V̄ ⊤)

[
σr(Ū)R

[
0r×r ere

⊤
1

e1e
⊤
r 0(m−r)×(n−r)

]
P⊤

]2
≤ −2dr+1 + 2λ+ 2σ2

r(Ū)L = −2dr+1 + 2λ+ 2σr(Ū V̄ ⊤)L,

where the second inequality follows from the fact that

∥∥∥∥σr(Ū)R

[
0r×r ere

⊤
1

e1e
⊤
r 0(m−r)×(n−r)

]
P⊤

∥∥∥∥
F

=
√
2σr(Ū) and the definition of L, and the equality follows from Theorem 3.3(ii). Hence, dr+1 ≤

λ+ Lσr(Ū V̄ ⊤). In addition, we can further compute that

inf
Y ∈∂f(ŪV̄ ⊤)

∥Y ∥2 = inf
S∈∂∥ŪV̄ ⊤∥∗

∥∇h(Ū V̄ ⊤) + λS∥2

= inf
∥W∥2≤1

∥∥∥∥−R [
λIr 0r×(n−r)

0(m−r)×r D̃iag(dr+1, . . . , dm)

]
P⊤ + λR

[
Ir 0r×(n−r)

0(m−r)×r W

]
P⊤

∥∥∥∥
2

= inf
∥W∥2≤λ

∥D̃iag(dr+1, . . . , dm)−W∥2 = max{dr+1 − λ, 0} ≤ Lσr(Ū V̄ ⊤),

where the first equality follows from the definition of f , the second follows from Theorem 2.1 and
Theorem 3.2, the third holds upon making a simple change of variables, the fourth makes use of the
unitary invariance of ∥ · ∥2, [23, Proposition 2.1] and the fact that dr+1 ≥ · · · ≥ dm ≥ 0, and the
inequality holds because dr+1 ≤ λ+ Lσr(Ū V̄ ⊤). This completes the proof.

In view of Theorem 4.1, for a second-order stationary point (Ū , V̄ ) of Fr in (1.5), by setting
X̄ = Ū V̄ ⊤, we see that the smaller σr(X̄) is, the closer X̄ is to being a stationary point of f in (1.4).
When σr(X̄) = 0, we see that X̄ is a stationary point of f , as proved in [2]; see, also [41, Section 3],
and [14, 3, 4] for similar results.
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Corollary 4.2. For any second-order stationary point (Ū , V̄ ) ∈ Rm×r × Rn×r of Fr in (1.5) satis-
fying rank(Ū) < r, Ū V̄ ⊤ is a stationary point of f in (1.4).

Our next goal is to characterize rank-deficient second-order stationary points of Fr in (1.5) under
the convexity of the function h. To do so, we need the following lemma.

Lemma 4.3. Let (Ū , V̄ ) ∈ Rm×r × Rn×r satisfy Ū⊤Ū = V̄ ⊤V̄ and that Ū V̄ ⊤ is a local (global)
minimizer of problem (1.4). Then, (Ū , V̄ ) is a local (global) minimizer of problem (1.5).

Proof. We only prove the statement for local minimizers, as the proof of the statement for global
minimizers is the same. Let (P,Q) ∈ OV̄ . By Theorem 3.1, there exists R ∈ Om such that
(R,Q) ∈ OŪ . Theorem 3.1 also asserts that σ(V̄ ) = σ(Ū). Therefore,

∥Ū V̄ ⊤∥∗ = ∥RD̃iag(σ(Ū))Q⊤QD̃iag(σ(V̄ ))P⊤∥∗ = σ(Ū)⊤σ(V̄ ) = ∥σ(Ū)∥22 =
1

2
(∥Ū∥2F + ∥V̄ ∥2F ),

which implies that Fr(Ū , V̄ ) = f(Ū V̄ ⊤). Next, since Ū V̄ ⊤ is a local minimizer of f , by definition,
there exists an ϵ > 0 such f(X) ≥ f(Ū V̄ ⊤) for any X satisfying ∥X − Ū V̄ ⊤∥ ≤ ϵ. By the continuity
of the mapping (U, V ) 7→ UV ⊤, there exists an ϵ′ > 0 such that ∥UV ⊤ − Ū V̄ ⊤∥F ≤ ϵ whenever
∥(U, V )− (Ū , V̄ )∥F ≤ ϵ′. Consider any (U, V ) satisfying ∥(U, V )− (Ū , V̄ )∥F ≤ ϵ′. Then,

Fr(U, V ) = h(UV ⊤) +
λ

2
(∥U∥2F + ∥V ∥2F ) ≥ h(UV ⊤) + λ min

U ′V ′⊤=UV ⊤

∥U ′∥2F + ∥V ′∥2F
2

=h(UV ⊤) + λ∥UV ⊤∥∗ = f(UV ⊤) ≥ f(Ū V̄ ⊤) = Fr(Ū , V̄ ),

where the second equality follows from [34, Lemma 1]. Hence, (Ū , V̄ ) is a local minimizer of Fr.
This completes the proof.

The theorem below shows that when the function h in problem (1.4) is convex, a rank-deficient
second-order stationary point of problem (1.5) does not only induce a stationary point for prob-
lem (1.4), but is also a global minimizer of problem (1.5).

Theorem 4.4 (Second-order stationary point with rank deficiency). Consider problems (1.4) and (1.5)
with convex h. For any (U, V ) ∈ Rm×r ×Rn×r satisfying rank(U) < r, the following statements are
equivalent:

(i) (U, V ) is a second-order stationary point of problem (1.5);

(ii) UV ⊤ is a global minimizer of problem (1.4) and U⊤U = V ⊤V ;

(iii) (U, V ) is a global minimizer of problem (1.5).

Proof. It is trivial that (iii) implies (i). We then prove that (i) implies (ii). By Theorem 4.2, UV ⊤

is a stationary point of problem (1.4). Since h is convex, the objective function f of problem (1.4) is
also convex. The global minimality then follows from the stationarity of UV ⊤, which together with
[19, Proposition 2] implies that U⊤U = V ⊤V . Finally, it follows directly from Lemma 4.3 that (ii)
implies (iii). The proof is thus completed.
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5 Characterization of r-factorizability

In view of Theorem 4.4, any rank-deficient second-order stationary point of Fr in (1.5) is a
global minimizer of f (1.4) when h is convex. Consequently, if h is convex and all second-order
stationary points of (1.5) are rank-deficient, then f is r-factorizable. Moreover, the discussion
preceding Theorem 4.1 suggests that the rank conditions cannot be dropped in general.

This section approaches the problem from a different perspective. In particular, we aim to derive
characterizations of r-factorizability. Our characterizations are based on a set of carefully chosen
parameters, as described in the following definition.

Definition 5.1. Let L ∈ (0,∞), M ∈ (0,∞], µ ≥ 0, r∗ ∈ [m] ∪ {0}, and 0 ≤ q ≤ m − r∗. We
define S(L, µ, r∗,M, q) to be the set of all h ∈ C2(Rm×n) satisfying the following conditions:

(i) The function h(·)− µ
2 ∥ · ∥

2
F is convex, and ∇h is L-Lipschitz continuous.

(ii) There exists a global minimizer X∗ ∈ Rm×n of f in (1.4) satisfying rank(X∗) = r∗, ∥X∗∥2 ≤
M and ∥∇h(X∗)∥∗ ≤ λ(r∗ + q).

In view of the first-order optimality condition of (1.4) and Theorem 2.1, one can observe that
any Lipschitz differentiable convex C2 function with (1.4) being solvable belongs to S(L, µ, r∗,M, q)
for some L, µ, r∗, M and q. We will study conditions on these parameters so that the corresponding
S(L, µ, r∗,M, q) consists solely of h whose corresponding f in (1.4) is r-factorizable. We will first
consider in Section 5.1 strongly convex loss functions (i.e., µ > 0), where our characterizations of
the parameters bear similarity to the recent work [44], which also considered strongly convex loss
functions. The general case will be studied in Section 5.2.

5.1 Lipschitz differentiable strongly convex C2 loss functions

We first characterize the r-factorizability of Lipschitz differentiable strongly convex C2 functions.
It turns out that under strong convexity, the characterization can be made independent of the
parameters M and q. We thus consider the class S(L, µ, r∗,∞,m− r∗). One can observe that any
Lipschitz differentiable strongly convex C2 function belongs to S(L, µ, r∗,∞,m− r∗) for some L, µ
and r∗. Our main result is the following theorem, which characterizes when S(L, µ, r∗,∞,m− r∗)
consists solely of functions h whose corresponding f in (1.4) is r-factorizable.

Theorem 5.2. Let r∗ ∈ [m] ∪ {0}, r ∈ [m], ∞ > L ≥ µ > 0 and κ = L
µ ≥ 1. If r∗, r and κ satisfy

any of the following conditions:

(1) r∗ = 0 or r = m,

(2) r > r∗ and κ = 3,

(3) r ≥ r∗ and κ < 3,

(4) r ≥ r∗, κ > 3 and r−r∗

1− 4
(κ−1)2

> min{r,m− r∗},

then for all h ∈ S(L, µ, r∗,∞,m − r∗), the corresponding f in (1.4) is r-factorizable. Otherwise,
there exists a quadratic h ∈ S(L, µ, r∗,∞,m − r∗) such that the corresponding f in (1.4) is not
r-factorizable.

Proof. This follows from Theorem B.1, Theorem B.2 and Theorem B.4.

Note that Item (3) in Theorem 5.2 also appeared in [44, Corollary 1.2] to ensure that, in (1.7),

all second-order stationary points U of h̃ satisfy that UU⊤ globally minimizes h over Sn+.
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5.2 Lipschitz differentiable convex C2 loss functions

In this subsection, we characterize r-factorizability of f in (1.4) with a Lipschitz differentiable
convex C2 function h. In view of the first-order optimality condition of (1.4) and Theorem 2.1, one
can observe that any such h with (1.4) being solvable belongs to S(L, 0, r∗,M, q) for some L, r∗,
M and q. The main result here is similar to Theorem 5.2. It characterizes when S(L, 0, r∗,M, q)
consists solely of functions h whose corresponding f in (1.4) is r-factorizable.

Theorem 5.3. Assume r∗ ∈ [m] ∪ {0} and r ∈ [m]. Let q ∈ [0,m− r∗], L, M ∈ (0,∞) and W ∗ be
the optimal value of the optimization problem:

sup
d∈N0

(q − d)(1− q

d
) +

(q − d+ LM(r∗ − r + d)/λ)2

4(r∗ − r + d)

s.t. max{r − r∗ + 1, 1} ≤ d ≤ min{r,m− r∗}, q − d+ LM(r∗ − r + d)/λ > 0.

(5.1)

If r, r∗, L, M , q, W ∗ satisfy any of the following conditions:

(1) r∗ = 0,

(2) r∗ > 0, r ≥ r∗ + ⌊q⌋, and W ∗ < 0,

then for all h ∈ S(L, 0, r∗,M, q), the corresponding f in (1.4) is r-factorizable. Otherwise, there
exists a quadratic h ∈ S(L, 0, r∗,M, q) such that the corresponding f in (1.4) is not r-factorizable.

Remark 5.4. In view of the inequality constraint involving q in (5.1), one can see that the optimal
value of (5.1) is decreasing in λ and increasing in M . In addition, when r ≥ r∗+⌊q⌋, the constraint
in (5.1) implies that d ≥ r − r∗ + 1 ≥ ⌊q⌋ + 1 ≥ q. This further implies that the optimal value
of (5.1) is increasing in q ∈ [0,min{d,m − r∗}]. Therefore, the W ∗ in Theorem 5.3 is more likely
negative when M and q are small and λ is large.

Proof for Theorem 5.3. This follows from Theorem C.1, Theorem C.2 and Theorem C.4.

A Pseudo-stationarity

Our main strategy for characterizing the r-factorizability is to analyze the pseudo-stationary
points of f in (1.4), which we define as follows.

Definition A.1 (Pseudo-stationarity). A matrix X ∈ Rm×n is said to be a pseudo-stationary point

of f in (1.4) if there exist (R,P ) ∈ OX and d ∈ Rm
+ such that −∇h(X) = RD̃iag(d)P⊤ and

d1 = · · · = ds = λ, where s = rank(X).

Definition A.1 is motivated by Theorem 2.1 and the first-order optimality condition of (1.4).
Indeed, any pseudo-stationary point with the d in Definition A.1 satisfying λ ≥ max{ds+1, . . . , dm}
is, in fact, a stationary point of Fr in (1.5). Here, we present several lemmas concerning pseudo-
stationary points that are useful for proving the main results in Section 5.

Lemma A.2. Let X1, X2 be two pseudo-stationary points of f in (1.4) in the sense of Definition A.1,
i.e., there exist R1, R2 ∈ Om and P1, P2 ∈ On such that

X1 = R1

[
Σ1 0m×(n−m)

]
P⊤
1 , −∇h(X1) = R1

[
D1 0m×(n−m)

]
P⊤
1 ,

X2 = R2

[
Σ2 0m×(n−m)

]
P⊤
2 , −∇h(X2) = R2

[
D2 0m×(n−m)

]
P⊤
2 ,

(A.1)
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where Σi = diag(σ1(Xi), . . . , σm(Xi)) ∈ Rm×m and Di = diag(di1, . . . , d
i
m) ∈ Rm×m

+ with di1 = · · · =
dirank(Xi)

= λ for i = 1, 2. Assume that h in (1.4) satisfies that h(·) − µ
2 ∥ · ∥

2
F is convex for some

µ ≥ 0, and ∇h is Lipschitz continuous with modulus L ≥ µ. Then, we have

max
τ∈Pm

m∑
i=1

(Lσi(X1) + d1i )(µστ(i)(X2) + d2τ(i)) +

m∑
i=1

(µσi(X1) + d1i )(Lστ(i)(X2) + d2τ(i))

−
m∑
i=1

(µσi(X1) + d1i )(Lσi(X1) + d1i )−
m∑
i=1

(µσi(X2) + d2i )(Lσi(X2) + d2i ) ≥ 0.

(A.2)

Proof. Define ϕ(·) := h(·) − µ
2 ∥ · ∥

2
F . Then we see that ϕ is convex and ∇ϕ is Lipschitz continuous

with modulus L− µ. We can now invoke [28, Theorem 2.1.5, (2.1.11)] on ϕ to deduce that

0 ≤ (L− µ)⟨∇ϕ(X1)−∇ϕ(X2), X1 −X2⟩ − ∥∇ϕ(X1)−∇ϕ(X2)∥2F . (A.3)

For the right hand side of (A.3), a direct computation shows that

(L− µ)⟨∇ϕ(X1)−∇ϕ(X2), X1 −X2⟩ − ∥∇ϕ(X1)−∇ϕ(X2)∥2F
= ⟨∇ϕ(X1)−∇ϕ(X2), (L− µ)X1 −∇ϕ(X1)− ((L− µ)X2 −∇ϕ(X2))⟩
= ⟨−∇ϕ(X1), (L− µ)X2 −∇ϕ(X2)⟩+ ⟨−∇ϕ(X2), (L− µ)X1 −∇ϕ(X1)⟩
− ⟨−∇ϕ(X1), (L− µ)X1 −∇ϕ(X1)⟩ − ⟨−∇ϕ(X2), (L− µ)X2 −∇ϕ(X2)⟩

= ⟨µX1 −∇h(X1), LX2 −∇h(X2)⟩+ ⟨µX2 −∇h(X2), LX1 −∇h(X1)⟩
− ⟨µX1 −∇h(X1), LX1 −∇h(X1)⟩ − ⟨µX2 −∇h(X2), LX2 −∇h(X2)⟩

=: S1 + S2,

(A.4)

where S1 := ⟨µX1−∇h(X1), LX2−∇h(X2)⟩+ ⟨µX2−∇h(X2), LX1−∇h(X1)⟩ and S2 := −⟨µX1−
∇h(X1), LX1 −∇h(X1)⟩ − ⟨µX2 −∇h(X2), LX2 −∇h(X2)⟩.

We now rewrite S1 and S2. We start by noting that for S2, its two summands can be rewritten
as follows using (A.1): for i = 1, 2,

−⟨µXi −∇h(Xi), LXi −∇h(Xi)⟩ = −
m∑
j=1

(µσj(Xi) + dij)(Lσj(Xi) + dij). (A.5)

Next, for S1, notice that

S1 = ⟨µX1 −∇h(X1), LX2 −∇h(X2)⟩+ ⟨µX2 −∇h(X2), LX1 −∇h(X1)⟩
(a)
=

〈
R1

[
µΣ1 +D1 0

]
P⊤
1 , R2

[
LΣ2 +D2 0

]
P⊤
2

〉
+
〈
R1

[
LΣ1 +D1 0

]
P⊤
1 , R2

[
µΣ2 +D2 0

]
P⊤
2

〉
=

〈
R⊤

2 R1

[
µΣ1 +D1 0

]
P⊤
1 P2,

[
LΣ2 +D2 0

]〉
+
〈
R⊤

2 R1

[
LΣ1 +D1 0

]
P⊤
1 P2,

[
µΣ2 +D2 0

]〉
,

(A.6)

where in (a) we have used (A.1). Using the above display and Theorem 2.3, we see that

S1 ≤ max
τ∈Pm

m∑
i=1

(µσi(X1) + d1i )(Lστ(i)(X2) + d2τ(i)) +

m∑
i=1

(Lσi(X1) + d1i )(µστ(i)(X2) + d2τ(i)).

The desired conclusion now follows immediately upon combining the above displays.
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Lemma A.3. Let τ ∈ Pm, L ≥ µ ≥ 0, and define τ(y) =
[
yτ(1) · · · yτ(m)

]⊤ ∈ Rm for all

y =
[
y1 · · · ym

]⊤ ∈ Rm. Let v1, v2, d1, d2 ∈ Rm
+ with v1 ̸= 0, and assume that v1 and v2 are

sorted in descending order. Let r = |{i ∈ [m] : v1i > 0}| and r∗ = |{i ∈ [m] : v2i > 0}| and assume
that

∀i ∈ [r], j ∈ [r∗], d1i = λ, d2j = λ, and ∀k ∈ [m] \ [r], d1k ≤ λ+ Lv1r . (A.7)

Let X1, X2, G1, G2 ∈ Rm×n be defined as

X1 = D̃iag(v1), X2 = D̃iag(τ(v2)), G1 = D̃iag(d1), G2 = D̃iag(τ(d2)), (A.8)

and suppose that

m∑
i=1

(Lσi(X1) + d1i )(µστ(i)(X2) + d2τ(i)) +

m∑
i=1

(µσi(X1) + d1i )(Lστ(i)(X2) + d2τ(i))

−
m∑
i=1

(µσi(X1) + d1i )(Lσi(X1) + d1i )−
m∑
i=1

(µσi(X2) + d2i )(Lσi(X2) + d2i ) ≥ 0

(A.9)

If G1 + µX1 ̸= G2 + µX2, we define a quadratic function h as follows:

h(X) =
L

2

m∑
i=1

n∑
j ̸=i

X2
ij +

µ

2

m∑
i=1

(Xii − (X1)ii)
2 − ⟨G1, X⟩

+
(⟨X −X1,−G2 − µX2 +G1 + µX1⟩)2

2⟨X2 −X1,−G2 − µX2 +G1 + µX1⟩
,

(A.10)

Otherwise, we set

h(X) =
L

2

m∑
i=1

n∑
j ̸=i

X2
ij +

µ

2

m∑
i=1

(Xii − (X1)ii)
2 − ⟨G1, X⟩. (A.11)

Then h is well defined, h(·)− µ
2 ∥·∥

2
F is convex, ∇h is Lipschitz continuous with modulus L, ∇h(X1) =

−G1, and ∇h(X2) = −G2. Moreover, if we define Fr as in (1.5) with the above h and define
(Ū , V̄ ) ∈ Rm×r × Rn×r as

Ū = D̃iag(
√
σ1(X1), . . . ,

√
σr(X1)) and V̄ = D̃iag(

√
σ1(X1), . . . ,

√
σr(X1)), (A.12)

then (Ū , V̄ ) is a second-order stationary point of Fr.

Remark A.4. Notice that the SVDs of X1 and X2 are given by

X1 = ImD̃iag(σ(X1))I
⊤
n and X2 = W D̃iag(σ(X2))

[
W 0
0 In−m

]⊤
,

where W ∈ Pm corresponds to the permutation τ ∈ Pm. Based on (A.4), (A.5) and (A.6), one can
show that the inequality (A.9) is equivalent to

(L− µ)⟨(G2 + µX2)− (G1 + µX1), X1 −X2⟩ ≥ ∥(G1 + µX1)− (G2 + µX2)∥2F . (A.13)
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Proof. We first consider the case where G1 + µX1 = G2 + µX2. In this case, the function h in
(A.11) is clearly well defined, and one can verify that the function h(·)− µ

2 ∥ · ∥
2
F is convex, and ∇h

is Lipschitz continuous with modulus L. Moreover, ∇h(X1) = −G1 and

∇h(X2) = µ(X2 −X1)−G1 = −G2.

Now it remains to show that (Ū , V̄ ) is a second-order stationary point of Fr.
We start by noticing from Theorem 3.2 that (Ū , V̄ ) is a stationary point of Fr (with R = Im,

Q = Ir and P = In in Theorem 3.2). Consequently, by Theorem 3.4, we know that (Ū , V̄ ) is a second-
order stationary point of Fr if and only if for all U11, V11 ∈ Rr×r, U21 ∈ R(m−r)×r, V21 ∈ R(n−r)×r,5

it holds that

− 2λtr(U⊤
11V11)− 2tr(D⊤U21V

⊤
21) + λ(∥U11∥2F + ∥V11∥2F + ∥U21∥2F + ∥V21∥2F )

+∇2h(X1)

[[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]]2
≥ 0,

(A.14)

where

Σ = diag(
√

σ1(X1), . . . ,
√

σr(X1))
(a)
= diag(

√
v11 , . . . ,

√
v1r) ∈ Rr×r,

D = D̃iag(d1r+1, . . . , d
1
m) ∈ R(m−r)×(n−r),

(A.15)

and in (a) we have used the fact that v1 is a nonnegative vector sorted in descending order. We will
verify (A.14).

To this end, we first use the representation of h in (A.11) to deduce that

∇2h(X1)

[[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]]2
≥ L∥ΣV ⊤

21∥2F + L∥U21Σ∥2F

(a)

≥ Lv1r(∥U21∥2F + ∥V21∥2F ),

(A.16)

where in (a) we have used the fact that ∥AB∥F ≥ σmin(A)∥B∥F . Therefore, it holds that

− 2λtr(U⊤
11V11)− 2tr(D⊤U21V

⊤
12) + λ(∥U11∥2F + ∥V11∥2F + ∥U21∥2F + ∥V21∥2F )

+∇2h(X1)

[[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]]2
(a)

≥ −2tr(D⊤U21V
⊤
21) + λ(∥U21∥2F + ∥V21∥2F ) +∇2h(X1)

[[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]]2
(b)

≥ −2∥D⊤∥2∥U21∥F ∥V ⊤
21∥F + λ(∥U21∥2F + ∥V21∥2F ) +∇2h(X1)

[[
U11Σ+ ΣV ⊤

11 ΣV ⊤
21

U21Σ 0

]]2
(c)

≥ −2(λ+ Lv1r)∥U21∥F ∥V21∥F + λ(∥U21∥2F + ∥V21∥2F ) + Lv1r(∥U21∥2F + ∥V21∥2F )
(d)

≥ −(λ+ Lv1r)(∥U21∥2F + ∥V21∥2F ) + λ(∥U21∥2F + ∥V21∥2F ) + Lv1r(∥U21∥2F + ∥V21∥2F ) = 0,

where in (a) we have used the Cauchy-Schwartz inequality to show that tr(U⊤
11V11) ≤ 1

2 (∥U11∥2F +
∥V11∥2F ), in (b) we have used the fact tr(ABC) = tr(CAB) ≤ ∥C∥F ∥AB∥F ≤ ∥A∥2∥C∥F ∥B∥F , in

5Here, we use the partition in (3.6), which is well defined because σ(Ū) = σ(V̄ ). We also note that U12, V12, U22, V22

are void because rank(Ū) = r.
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(c) we have used (A.7), (A.16) and the definition of D in (A.15), and in (d) we have used the fact
∥A∥F ∥B∥F ≤ 1

2 (∥A∥
2
F + ∥B∥2F ). This verifies (A.14) and hence (Ū , V̄ ) is a second-order stationary

point of Fr.
Next, we consider the case where G1 + µX1 ̸= G2 + µX2. By Theorem A.4, we know that (A.9)

is equivalent to

(L− µ)⟨(G2 + µX2)− (G1 + µX1), X1 −X2⟩ ≥ ∥(G1 + µX1)− (G2 + µX2)∥2F .

Since G1+µX1 ̸= G2+µX2, we see that (L−µ)⟨(G2+µX2)−(G1+µX1), X1−X2⟩ ≥ ∥(G1+µX1)−
(G2 + µX2)∥2F > 0. In particular, this implies L > µ and ⟨(G2 + µX2)− (G1 + µX1), X1 −X2⟩ > 0,
showing that h in (A.10) is well defined. Furthermore, we have

L− µ ≥ ∥(G1 + µX1)− (G2 + µX2)∥2F
⟨(G2 + µX2)− (G1 + µX1), X1 −X2⟩

. (A.17)

Now, it is routine to check that h(·) − µ
2 ∥ · ∥

2
F is convex, ∇h(X1) = −G1, and ∇h(X2) = −G2.

Moreover, the relation in (A.16) and hence the second-order stationarity of (Ū , V̄ ) can be verified
similarly to that in the case where G1 + µX1 = G2 + µX2. Thus, it remains to show that ∇h is
Lipschitz continuous with modulus L.

To this end, notice that for all X,Y ∈ Rm×n and the function h defined in (A.10), it holds that

∇2h(X)[Y, Y ] = L

m∑
i=1

n∑
j ̸=i

Y 2
ij + µ

n∑
i=1

Y 2
ii +

(⟨Y,−G2 − µX2 +G1 + µX1⟩)2

⟨X2 −X1,−G2 − µX2 +G1 + µX1⟩

(a)
= L

m∑
i=1

n∑
j ̸=i

Y 2
ij + µ

n∑
i=1

Y 2
ii +

(⟨D̃iag(Y11, . . . , Ymm),−G2 − µX2 +G1 + µX1⟩)2

⟨X2 −X1,−G2 − µX2 +G1 + µX1⟩

(b)

≤ L

m∑
i=1

n∑
j ̸=i

Y 2
ij + µ

n∑
i=1

Y 2
ii +

∥D̃iag(Y11, . . . , Ymm)∥2F ∥ −G2 − µX2 +G1 + µX1∥2F
⟨X2 −X1,−G2 − µX2 +G1 + µX1⟩

(c)

≤ L∥Y ∥2F ,

where in (a) we have used the fact that X1, X2, G1, G2 are diagonal (see (A.8)), in (b) we have used
the Cauchy-Schwartz inequality, and in (c) we have used (A.17). This proves that ∇h is Lipschitz
continuous with modulus L, and completes the proof.

B Proof of Theorem 5.2

This subsection contains the essential auxiliary results for the proof of Theorem 5.2. Note that
Theorem 5.2 is about deriving conditions for S(L, µ, r∗,∞,m − r∗) to consist solely of h whose
corresponding f in (1.4) is r-factorizable. Our first task is to reduce this problem to a simpler one.

Proposition B.1. Let ∞ > L ≥ µ > 0, r ∈ [m] and r∗ ∈ [m] ∪ {0}. The following statements are
equivalent.

(i) There exists an h ∈ S(L, µ, r∗,∞,m − r∗) (see Theorem 5.1) such that f in (1.4) is not
r-factorizable.

(ii) There exist x, g, y, v ∈ Rm with ∥g∥∞ > λ and τ ∈ Pm such that

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi) ≥ 0,

(B.1a)
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and

∀i ∈ [r], xi > 0, gi = λ, ∀i ∈ [r∗], yi > 0, vi = λ, (B.1b)

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, λ+ Lmin
j∈[r]

xj ], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, λ]. (B.1c)

Proof. Assume (i). By (i), we can select h ∈ S(L, µ, r∗,∞,m−r∗) and X2 ∈ Rm×n with rank(X2) =
r∗, −∇h(X2) ∈ λ∂∥X2∥∗, and f is not r-factorizable. The latter means we can find (Ū , V̄ ) being a
second-order stationary point of Fr in (1.5) and X1 = Ū V̄ ⊤ is not a stationary point of f .

Applying Theorem 3.2 (see also Theorem 3.3) to (Ū , V̄ ) and using Theorem 2.1 and the condition
that −∇h(X2) ∈ λ∂∥X2∥∗, we can write

X1 = R1

[
Σ1 0

]
P⊤
1 , −∇h(X1) = R1

[
D1 0

]
P⊤
1 ,

X2 = R2

[
Σ2 0

]
P⊤
2 , −∇h(X2) = R2

[
D2 0

]
P⊤
2 ,

(B.2)

for some Ri ∈ Om and Pi ∈ On and m×m diagonal matrices Σi and Di, i = 1, 2, where diag(Σi) ∈
Rm

+ consisting of all the singular values of Xi in descending order, di := diag(Di) ∈ Rm
+ with

di1 = · · · = dirank(Xi)
= λ, for i = 1, 2. Clearly, we have rank(X1) = r, otherwise by Theorem 4.4 we

can conclude that X1 is a stationary point of f , leading to a contradiction. Applying Theorem A.2,
there exists τ̄ ∈ Pm such that

m∑
i=1

(Lσi(X1) + d1i )(µστ̄(i)(X2) + d2τ̄(i)) +

m∑
i=1

(µσi(X1) + d1i )(Lστ̄(i)(X2) + d2τ̄(i))

−
m∑
i=1

(Lσi(X1) + d1i )(µσi(X1) + d1i )−
m∑
i=1

(Lσi(X2) + d2i )(µσi(X2) + d2i ) ≥ 0,

(B.3)

where L and µ are defined in Theorem 5.1 for the h we selected. Next, applying Theorem 4.1, we
know for all i ≥ r+1, it holds that d1i ≤ λ+Lσr(X1); in addition, it must hold that ∥d1∥∞ > λ for
otherwise, (B.2) and Theorem 2.1 would imply thatX1 is a stationary point of f , which is a contradic-
tion. On the other hand, using the fact that −∇h(X2) ∈ λ∂∥X2∥∗, (B.2) and Theorem 2.1, we know
d2i ≤ λ for all i ∈ [m]. This means that (x, g, y, v, τ) = (diag(Σ1), diag(D1), diag(Σ2), diag(D2), τ̄)
satisfies (B.1a)–(B.1c) and ∥g∥∞ > λ. Therefore we know that (ii) holds.

Next, assume (ii). Then, we are able to select (x, g, y, v, τ) satisfying (B.1a)–(B.1c). We sort x
and y in descending order to get x̄ and ȳ, respectively. Pick τ1, τ2 ∈ Pm such that

x̄ = τ1(x), ȳ = τ2(y) and we define ḡ = τ1(g), v̄ = τ2(v). (B.4)

Since we have in view of (B.1b) and (B.1c) that

∀i ∈ [r], xi > 0, ∀i ∈ [m] \ [r], xi = 0,

∀i ∈ [r∗], yi > 0, ∀i ∈ [m] \ [r∗], yi = 0,
(B.5)

we can see from (B.4) that

τ1([r]) = [r], τ1([m] \ [r]) = [m] \ [r], τ2([r
∗]) = [r∗], τ2([m] \ [r∗]) = [m] \ [r∗]. (B.6)

Moreover, notice that from (B.1b) and (B.1c) we have

∀i ∈ [r], gi = λ, ∀i ∈ [m] \ [r], gi ∈ [0, λ+ Lmin
i∈[r]

xi],

∀i ∈ [r∗], vi = λ, ∀i ∈ [m] \ [r∗], vi ∈ [0, λ],
(B.7)
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This together with the definitions of ḡ and v̄ in (B.4) and the relations (B.5) and (B.6) implies that

∀i ∈ [r], x̄i > 0, ḡi = λ, ∀i ∈ [m] \ [r], x̄i = 0, ḡi ∈ [0, λ+ Lmin
i∈[r]

x̄i],

∀i ∈ [r∗], ȳi > 0, v̄i = λ, ∀i ∈ [m] \ [r∗], ȳi = 0, v̄i ∈ [0, λ].
(B.8)

Let ρ ∈ Pm be defined as ρ := τ−1
2 ττ1 and define the following m× n matrices:

X1 = D̃iag(x̄), X2 = D̃iag(ρ(ȳ)), G1 = D̃iag(ḡ), G2 = D̃iag(ρ(v̄)). (B.9)

By direct calculation, we have:

m∑
i=1

(Lσi(X1) + ḡi)(µσρ(i)(X2) + v̄ρ(i)) +

m∑
i=1

(µσi(X1) + ḡi)(Lσρ(i)(X2) + v̄ρ(i))

−
m∑
i=1

(Lσi(X1) + ḡi)(µσi(X1) + ḡi)−
m∑
i=1

(Lσi(X2) + v̄i)(µσi(X2) + v̄i)

(a)
=

m∑
i=1

(Lx̄i + ḡi)(µȳρ(i) + v̄ρ(i)) +

m∑
i=1

(µx̄i + ḡi)(Lȳρ(i) + v̄ρ(i))

−
m∑
i=1

(Lx̄i + ḡi)(µx̄i + ḡi)−
m∑
i=1

(Lȳi + v̄i)(µȳi + v̄i)

(b)
=

m∑
i=1

(Lxτ1(i) + gτ1(i))(µyτ2(ρ(i)) + vτ2(ρ(i))) +

m∑
i=1

(µxτ1(i) + gτ1(i))(Lyτ2(ρ(i)) + vτ2(ρ(i)))

−
m∑
i=1

(Lxτ1(i) + gτ1(i))(µxτ1(i) + gτ1(i))−
m∑
i=1

(Lyτ2(i) + vτ2(i))(µyτ2(i) + vτ2(i))

(c)
=

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)
(d)

≥ 0, (B.10)

where in (a) we have used the fact that x̄ and ȳ are nonnegative vectors sorted in descending order
to calculate σi(X1) and σi(X2) using (B.9), in (b) we have used (B.4), in (c) we have used that
ρ = τ−1

2 ττ1, the substitution i ← τ−1
1 (i) for the first three terms, and the substitution i ← τ−1

2 (i)
for the last term, and in (d) we have used (B.1a). Applying Theorem A.3, and noticing that the
prerequisites in Theorem A.3 are satisfied by (B.8), (B.10) and the fact that x̄ and ȳ are nonnegative
vectors sorted in descending order, we know there exists a quadratic h ∈ C2(Rm×n), such that
∇h(Xi) = −Gi for i = 1, 2, h(·) − µ

2 ∥ · ∥
2
F is convex, and ∇h is Lipschitz continuous with modulus

L. Moreover, (Ū , V̄ ) is a second-order stationary point of Fr in (1.5), where (Ū , V̄ ) ∈ Rm×r ×Rn×r

is defined as:

Ū = D̃iag(
√

σ1(X1), . . . ,
√

σr(X1)), V̄ = D̃iag(
√
σ1(X1), . . . ,

√
σr(X1)). (B.11)

However, since ∥ḡ∥∞ > λ, we know −∇h(X1) = G1 /∈ λ∂∥X1∥∗ by Theorem 2.1. This shows
that X1 is not a stationary point of f in (1.4), and hence f is not r-factorizable. Finally, in
view of the definitions of X2 and G2 in (B.9), the relations in (B.8) and Theorem 2.1, we can
deduce that −∇h(X2) = G2 ∈ λ∂∥X2∥∗ and rank(X2) = r∗, from which we conclude further that
h ∈ S(L, µ, r∗,∞,m− r∗). Consequently, we know (i) holds.

20



Let ∞ > L ≥ µ > 0. Consider the next optimization problem:

sup
x,g,y,v∈Rm

τ∈Pm

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)

s.t. ∀i ∈ [r], xi > 0, gi = λ, ∀i ∈ [r∗], yi > 0, vi = λ,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, λ+ Lmin
j∈[r]

xj ],

∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, λ].

(B.12)

One can deduce from Theorem B.1 that determining the r-factorizability of f in (1.4) with h ∈
S(L, µ, r∗,∞,m − r∗) is equivalent to determining the existence of a feasible solution (x, g, y, v, τ)
with ∥g∥∞ > λ to (B.12) having nonnegative objective function value. We now turn to (B.12)
and observe that the objective can be rewritten as a sum with the ith summand depending only on
(xi, gi, yτ(i), vτ(i)).

6 In addition, from the structure of the constraints in (B.12), we see that the terms
{(xi, gi, yτ(i), vτ(i))}i∈[m] can be divided into 4 groups depending on whether i ∈ [r] and τ(i) ∈ [r∗].
These motivate the definitions of the next four associated index sets, for any fixed τ ∈ Pm:

J τ
1 := [r] ∩ τ−1[r∗], J τ

2 := [r] \ J τ
1 , J τ

3 := ([m] \ [r]) ∩ τ−1[r∗], J τ
4 := ([m] \ [r]) \ J τ

3 . (B.13)

Let dτ := |J τ
2 |. Then, by the definition of {J τ

i }i∈[4] in (B.13), we have

|J1| = r−|J τ
2 | = r−dτ , |J τ

3 | = r∗−|J τ
1 | = r∗−r+dτ , |J τ

4 | = m−r−|J τ
3 | = m−r∗−dτ . (B.14)

To solve (B.12), our strategy is to introduce an auxiliary variable w ∈ R to transform (B.12) to the
next equivalent form:

sup
x,g,y,v∈Rm

τ∈Pm,w∈R

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)

s.t. ∀i ∈ [r], xi ≥ w > 0, gi = λ, ∀i ∈ [r∗], yi > 0, vi = λ,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, λ+ Lw],

∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, λ].

(B.15)

Problem (B.12) is equivalent to (B.15) in the following sense: for any feasible solution (x, g, y, v, τ)
of (B.12), (x, g, y, v, τ,mini∈[r] xi) is a feasible solution of (B.12) having the same objective function
value; for any feasible solution (x, g, y, v, τ, w) of (B.15), (x, g, y, v, τ) is a feasible solution of (B.12)
having the same objective function value. Consequently, we have the following result.

Proposition B.2. There exists a feasible solution (x, g, y, v, τ) with ∥g∥∞ > λ to (B.12) having
nonnegative objective function value if and only if there exists a feasible solution (x, g, y, v, τ, w) with
∥g∥∞ > λ to (B.15) having nonnegative objective function value.

6Specifically, notice that the fourth sum in the objective can be rewritten as
∑m

i=1(Lyτ(i) + vτ(i))(µyτ(i) + vτ(i)).
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Next, we plan to fix τ and w to analyze the optimal value and the optimal solution of (B.15).
The reason to do so is that the optimization problem can be made separable when τ and w are fixed.
To simplify the calculation, we only consider the case where λ = 1 in the next lemma.

Lemma B.3. Let r∗ ∈ [m] ∪ {0}, r ∈ [m], and ∞ > L ≥ µ > 0. Let τ ∈ Pm and w > 0. Let
{J τ

i }i∈[4] be defined in (B.13). Consider the following optimization problem:

sup
x,g,y,v∈Rm

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)

s.t. ∀i ∈ [r], xi ≥ w, gi = 1, ∀i ∈ [r∗], yi > 0, vi = 1,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1].

(B.16)

Then, the optimization problem (B.16) has optimal solutions, and the optimal value is(
−Lµ|J τ

2 |+ |J τ
3 |

L(L− µ)2

4µ

)
w2. (B.17)

Moreover, the following statements are equivalent:

� |J τ
3 | > 0.

� For all the optimal solutions (x̄, ḡ, ȳ, v̄) of (B.16), we have ∥ḡ∥∞ > 1.

� There exists one optimal solution (x̄, ḡ, ȳ, v̄) of (B.16) such that ∥ḡ∥∞ > 1.

Proof. Using the definition of permutation, we notice that

m∑
i=1

(Lyi + vi)(µyi + vi) =

m∑
i=1

(Lyτ(i) + vτ(i))(µyτ(i) + vτ(i)). (B.18)

Substituting (B.18) into (B.16), we get that

sup
x,g,y,v∈Rm

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyτ(i) + vτ(i))(µyτ(i) + vτ(i))

s.t. ∀i ∈ [r], xi ≥ w, gi = 1, ∀i ∈ [r∗], yi > 0, vi = 1,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1].

(B.19)

Observe that (B.19) can be decomposed into the next m subproblems for each i ∈ [m]:

sup
xi,gi,yi,vi∈R

(Lxi + gi)(µyτ(i) + vτ(i)) + (µxi + gi)(Lyτ(i) + vτ(i))

− (Lxi + gi)(µxi + gi)− (Lyτ(i) + vτ(i))(µyτ(i) + vτ(i))

s.t.


xi ≥ w, gi = 1, yτ(i) > 0, vτ(i) = 1, if i ∈ J τ

1 ,

xi ≥ w, gi = 1, yτ(i) = 0, vτ(i) ∈ [0, 1], if i ∈ J τ
2 ,

xi = 0, gi ∈ [0, 1 + Lw], yτ(i) > 0, vτ(i) = 1, if i ∈ J τ
3 ,

xi = 0, gi ∈ [0, 1 + Lw], yτ(i) = 0, vτ(i) ∈ [0, 1], if i ∈ J τ
4 ,

(B.20)
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where we recall the definition of {J τ
i }i∈[4] in (B.13). We now consider the solution and optimal

value of each subproblem (B.20) for fixed i:

1. i ∈ J τ
1 . Then (B.20) takes the following form:

sup
xi,yτ(i)

(Lxi + 1)(µyτ(i) + 1) + (µxi + 1)(Lyτ(i) + 1)

− (Lxi + 1)(µxi + 1)− (Lyτ(i) + 1)(µyτ(i) + 1)

s.t. xi ≥ w, yτ(i) > 0,

(B.21)

where we used the fact that gi and vτ(i) are 1. Denote the objective function of (B.21) by S1.
By direct calculation, we can rewrite S1(xi, yτ(i)) as:

S1(xi, yτ(i)) = −Lµ(xi − yτ(i))
2.

Clearly, the optimal value of (B.21) is 0, and it is achieved if and only if

xi = yτ(i) ≥ w. (B.22)

2. i ∈ J τ
2 . Then (B.20) takes the following form:

sup
xi,vτ(i)

(Lxi + 1)vτ(i) + (µxi + 1)vτ(i) − (Lxi + 1)(µxi + 1)− v2τ(i)

s.t. xi ≥ w, vτ(i) ∈ [0, 1],
(B.23)

where we used the fact that gi and yτ(i) are 1 and 0, respectively. Denote the objective function
of (B.23) by S2. By direct calculation, we can rewrite S2(xi, vτ(i)) as:

S2(xi, vτ(i)) = −Lµx2
i + (L+ µ)xi(vτ(i) − 1)− (vτ(i) − 1)2.

First, we notice that S2 is strictly decreasing on [0,∞) as a function of xi when vτ(i) is fixed
to be any value in [0, 1]. This means that

sup
xi≥w

S2(xi, vτ(i)) = −Lµw2 + (L+ µ)w(vτ(i) − 1)− (vτ(i) − 1)2, (B.24)

where the optimal value is achieved if and only if xi = w. Let S̃ denote the function on the
right hand side of (B.24). Then we see S̃ is strictly increasing as a function of vτ(i) on (−∞, 1]
by using the elementary properties of quadratic functions. Therefore, the optimal value of
(B.23) is −Lµw2, and it is achieved if and only if

xi = w, vτ(i) = 1. (B.25)

3. i ∈ J τ
3 . Then (B.20) has the following form:

sup
gi,yτ(i)

gi(µyτ(i) + 1) + gi(Lyτ(i) + 1)− g2i − (Lyτ(i) + 1)(µyτ(i) + 1)

s.t. gi ∈ [0, 1 + Lw], yτ(i) > 0,
(B.26)

where we used the fact that xi and vτ(i) are 0 and 1, respectively. Denote the objective function
of (B.26) by S3. By direct calculation we can rewrite S3 as follows

S3(gi, yτ(i)) =
(L− µ)2

4Lµ
(gi − 1)2 − Lµ

(
yτ(i) −

(L+ µ)(gi − 1)

2Lµ

)2

23



=
L(L− µ)2w2

4µ
+

(L− µ)2

4Lµ
(gi − (1 + Lw))(Lw + gi − 1)

− Lµ

(
yτ(i) −

(L+ µ)(gi − 1)

2Lµ

)2

. (B.27)

Notice that gi− (1+Lw) ≤ 0 and Lw+gi−1 > 0 when gi ∈ (1, 1+Lw]. We can thus see from
the second expression in the above display that the optimal value of S3 when gi ∈ (1, 1 + Lw]

is L(L−µ)2w2

4µ ; moreover, when L > µ, the optimal value is achieved if and only if

gi = 1 + Lw, yτ(i) =
(L+ µ)w

2µ
, (B.28)

while when L = µ, the optimal value is achieved if and only if

gi ∈ (1, 1 + Lw], yτ(i) =
(L+ µ)(gi − 1)

2Lµ
. (B.29)

On the other hand, when gi ≤ 1, notice that yτ(i) > 0, and hence yτ(i) − (L+µ)(gi−1)
2Lµ >

| (L+µ)(gi−1)
2Lµ |. Then we have from the first expression of S3 in (B.27) that

S3(gi, yτ(i)) <
(L− µ)2

4Lµ
(gi − 1)2 − Lµ

(
(L+ µ)(gi − 1)

2Lµ

)2

= −(gi − 1)2 ≤ 0.

Consequently, the optimal value of (B.26) is L(L−µ)2w2

4µ , and is achieved as described in (B.28)

and (B.29).

4. i ∈ J τ
4 . Then (B.20) has the following form:

sup
gi,vτ(i)

2givτ(i) − g2i − v2τ(i)

s.t. gi ∈ [0, 1 + Lw], vτ(i) ∈ [0, 1],
(B.30)

where we used the fact that xi and yτ(i) are 0. Notice that the objective of the above problem
is −(gi − vτ(i))

2. Clearly, the optimal value of (B.30) is 0, and is achieved if and only if

gi = vτ(i) ∈ [0, 1]. (B.31)

Consequently, by the solution sets given in (B.22), (B.25), (B.28), (B.29) and (B.31), we know the
solution set of (B.16) is nonempty. The optimal value is obtained by summing all the optimal values
given in the four cases. Moreover, every solution (x̄, ḡ, ȳ, v̄) of (B.16) satisfies ∥ḡ∥∞ > 1 if and only
if |J τ

3 | > 0, according to the structure of ḡ given in (B.28), (B.29) and (B.31).

Proposition B.4. Let r∗ ∈ [m]∪{0}, r ∈ [m], and ∞ > L ≥ µ > 0. Let G be the objective function
of (B.15) and let κ := L

µ ≥ 1. If r∗, r and κ satisfy any of the following conditions, then there is

no feasible (x̄, ḡ, ȳ, v̄, τ̄ , w̄) to (B.15) satisfying ∥ḡ∥∞ > λ and G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0.

1. r∗ = 0 or r = m.

2. r > r∗ and κ = 3.
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3. r ≥ r∗ and κ < 3.

4. r ≥ r∗, κ > 3 and r−r∗

1− 4
(κ−1)2

> min{r,m− r∗}.

Otherwise, such a feasible solution exists.

Proof. By the change of variables (x, g, y, v, τ, w)← (x/λ, g/λ, y/λ, v/λ, τ, w/λ), we see that (B.15)
can be reduced to the following problem:

sup
x,g,y,v∈Rm

τ∈Pm,w∈R

λ2

[ m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)

]
s.t. ∀i ∈ [r], xi ≥ w > 0, gi = 1, ∀i ∈ [r∗], yi > 0, vi = 1,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw],

∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1].

(B.32)

Since dropping the constant λ2 won’t affect the sign of the function value and our claim only
concerns the feasible set of (B.15) and the sign of its objective value, we shall consider the following
optimization problem instead:

sup
x,g,y,v∈Rm

τ∈Pm,w∈R

m∑
i=1

(Lxi + gi)(µyτ(i) + vτ(i)) +

m∑
i=1

(µxi + gi)(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)(µxi + gi)−
m∑
i=1

(Lyi + vi)(µyi + vi)

s.t. ∀i ∈ [r], xi ≥ w > 0, gi = 1, ∀i ∈ [r∗], yi > 0, vi = 1,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw],

∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1].

(B.33)

Notice that when τ and w are fixed, (B.33) becomes (B.16). Applying Theorem B.3, setting dτ =
|J τ

2 | and recalling the definition of J τ
3 in (B.14), we see that the solution set Ωw,τ of (B.16) is

nonempty, and for all (x̄, ḡ, ȳ, v̄) ∈ Ωw,τ , it holds that ∥ḡ∥∞ > 1 if and only if r∗ − r + dτ > 0.
Next, define the following function H : N0 × R+ → R:

H(d,w) :=

(
−Lµd+ (r∗ − r + d)

L(L− µ)2

4µ

)
w2. (B.34)

Then in view of (B.14) and (B.17), the optimal value of (B.16) is given by H(|J τ
2 |, w). Moreover,

we see that (B.33) is equivalent to the following problem

sup
w∈R, d∈N0

H(d,w) s.t. w > 0, r − r∗ ≤ d ≤ min{r,m− r∗}, (B.35)

where the bound for d comes from the requirement that |J τ
i | ≥ 0 for i ∈ [4] in (B.14).

We consider the following scenarios:
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(S1) The optimal value of (B.35) is nonpositive, and (B.35) has no feasible solution (d,w) satisfying
H(d,w) ≥ 0 and r∗ − r + d > 0.

In this scenario, we claim that (B.15) has no feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) with ∥ḡ∥∞ > λ
and G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0, where G is the objective of (B.15). A short proof is provided below.

Suppose such a feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) of (B.15) exists, then either (x̄, ḡ, ȳ, v̄)/λ is
optimal for (B.16) with w = w̄/λ and τ = τ̄ , or (x̄, ḡ, ȳ, v̄)/λ is not optimal. In the latter case,
the optimal value of (B.35) must be positive. In the former case, we see from Theorem B.3
that |J τ̄

3 | > 0, and hence (B.35) has a feasible solution (d̃, w̃) = (|J τ̄
2 |, w̄/λ) with H(d̃, w̃) ≥ 0

and r∗ − r + d̃ = r∗ − r + |J τ̄
2 | = |J τ̄

3 | > 0 (see (B.14)). Both cases yield a contradiction.

(S2) There exists a feasible solution (d, w̃) of (B.35) satisfying H(d, w̃) ≥ 0 and r∗ − r + d > 0.

In this scenario, (B.15) has a feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) with G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0 and
∥ḡ∥∞ > λ. Indeed, we just need to take τ̄ ∈ Pm satisfying |J τ̄

2 | = d, and then take (x̃, g̃, ỹ, ṽ) to
be the optimal solution of (B.16) with τ = τ̄ and w = w̃, and set (x̄, ḡ, ȳ, v̄, w̄) = λ(x̃, g̃, ỹ, ṽ, w̃).

We note that the classification in (S1) and (S2) is not complete, since we cannot say anything if
the optimal value of (B.35) is positive and there is no feasible solution (d,w) of (B.35) satisfying
H(d,w) ≥ 0 and r∗− r+ d > 0. Nevertheless, the two scenarios in (S1) and (S2) are enough for our
proof. Consider the following cases on r, r∗ and κ := L/µ.

Case 1: r = m or r∗ = 0. If r = m, then every feasible point (x, g, y, v, τ, w) of (B.12) satisfies
∥g∥∞ = λ; moreover, every feasible point (d,w) to (B.35) must satisfy d = r−r∗ andH(d,w) =
−Lµdw2 ≤ 0. Then (S1) holds. If r∗ = 0, we see that every feasible point (d,w) to (B.35)
must satisfy d = r. Then, in view of (B.34), we can rewrite (B.35) as:

sup
w>0
−Lµrw2.

This means that every feasible solution of (B.35) has a negative objective function value. Then
(S1) holds.

Case 2: r < r∗. Setting d = 0 and selecting w > 0, we see that

H(d,w) =

(
−Lµd+ (r∗ − r + d)

L(L− µ)2

4µ

)
w2 = (r∗ − r)

L(L− µ)2

4µ
w2 ≥ 0,

and r∗ − r + d > 0. Then (S2) holds.

Case 3: m > r ≥ r∗ and L = µ (i.e., κ = 1). Then, we have

H(d,w) =

(
−Lµd+ (r∗ − r + d)

L(L− µ)2

4µ

)
w2 = −L2dw2.

Then the optimal value of (B.35) is 0, and for all feasible solution (d,w) of (B.35) with
r∗ − r + d > 0 it holds that d > r − r∗ ≥ 0, and hence H(d,w) < 0. Then (S1) holds.

Case 4: m > r ≥ r∗ > 0 and L > µ (i.e., κ > 1). If κ = L
µ = 3, then we have −Lµ + L(L−µ)2

4µ =

Lµ( (κ−1)2

4 − 1) = 0. Therefore, (B.35) is equivalent to that:

sup
w∈R, d∈N0

(r∗ − r)
L(L− µ)2

4µ
w2 s.t. w > 0, r − r∗ ≤ d ≤ min{r,m− r∗}.
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In this case, we clearly see that the optimal value of (B.35) is 0, and is achievable if and only
if r = r∗. If r > r∗, then (S1) holds. If r = r∗, then any feasible solution to (B.35) is optimal.

Since r = r∗ < m, for d̂ := min{r,m− r∗} and any w > 0, the point (w, d̂) is feasible (because

min{r,m− r∗} > 0), and in this case we have r∗ − r + d̂ = d̂ > 0, which means (S2) holds.

Next we assume κ ̸= 3. Let α := r−r∗

1− 4
(κ−1)2

= r−r∗

1− 4µ2

(L−µ)2

. We now rewrite H in (B.34) as:

H(d,w) =

(
−Lµd+ (r∗ − r + d)

L(L− µ)2

4µ

)
w2

=
L(L− µ)2

4µ

(
−4µ2d

(L− µ)2
+ r∗ − r + d

)
w2 =

L(L− µ)2

4µ

(
−4d

(κ− 1)2
+ r∗ − r + d

)
w2

=
L(L− µ)2

4µ

((
1− 4

(κ− 1)2

)
d+ r∗ − r

)
w2 =

L(L− µ)2

4µ

(
1− 4

(κ− 1)2

)
(d− α)w2.

Then, we can rewrite (B.35) as:

sup
w∈R, d∈N0

L(L− µ)2

4µ

(
1− 4

(κ− 1)2

)
(d− α)w2

s.t. w > 0, r − r∗ ≤ d ≤ min{r,m− r∗}, α =
r − r∗

1− 4
(κ−1)2

.

If κ < 3 and r ≥ r∗, then α ≤ 0, and we see that the optimal value of (B.35) is 0. Moreover,
for all feasible solution (d,w) of (B.35) with r∗ − r + d > 0, we have d > r − r∗ ≥ 0 and
H(d,w) < 0. Then (S1) holds.

Finally, we assume κ > 3. If α > min{r,m − r∗}, then the optimal value of (B.35) is 0,
and for all (d,w) that is feasible to (B.35), it holds that H(d,w) < 0. Then (S1) holds. If
α ≤ min{r,m − r∗}, then we can select d = min{r,m − r∗} and any w > 0, which is feasible
for (B.35) and r∗ − r + d = min{r∗,m− r} > 0, and we have H(d,w) ≥ 0. Then (S2) holds.

In summary, note that we have argued that we have either (S1) or (S2). Moreover, (S1) holds if and
only if any of the following is true, and (S2) holds otherwise.

(1) r = m or r∗ = 0.

(2) m > r ≥ r∗ > 0 and κ = 1.

(3) m > r ≥ r∗ > 0, κ > 1, κ = 3 and r > r∗.

(4) m > r ≥ r∗ > 0, κ > 1, κ < 3.

(5) m > r ≥ r∗ > 0, κ > 1, κ > 3 and α > min{r,m− r∗}.

Upon integrating (1) into the other conditions and regrouping (2), (3) and (4), we can further rewrite
the above conditions as follows:

(1) r = m or r∗ = 0.

(2) r > r∗ and κ = 3.

(3) r ≥ r∗ and κ < 3.

(4) r ≥ r∗, κ > 3 and α > min{r,m− r∗}.
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C Proof of Theorem 5.3

The development here is similar to Section B. First, we would like to transform the r-factorizability
of f to a more concrete problem.

Proposition C.1. Let r∗ ∈ [m] ∪ {0}, r ∈ [m], q ∈ [0,m − r∗], and L,M ∈ (0,∞). Then the
following statements are equivalent.

(i) There exists an h ∈ S(L, 0, r∗,M, q) (see Theorem 5.1) such that f in (1.4) is not r-factorizable.

(ii) There exist x, g, y, v ∈ Rm with ∥g∥∞ > λ and τ ∈ Pm such that

m∑
i=1

(Lxi + gi)vτ(i) +

m∑
i=1

gi(Lyτ(i) + vτ(i))−
m∑
i=1

(Lxi + gi)gi −
m∑
i=1

(Lyi + vi)vi ≥ 0, (C.1a)

and

∀i ∈ [r], xi > 0, gi = λ, ∀i ∈ [r∗], 0 < yi ≤M, vi = λ,

m∑
j=r∗+1

vj ≤ λq, (C.1b)

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, λ+ Lmin
j∈[r]

xj ], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, λ]. (C.1c)

Proof. Assume (i), we can argue as in the proof of Theorem B.1 to get (B.3) with µ = 0, and
(x, g, y, v, τ) = (diag(Σ1), diag(D1), diag(Σ2), diag(D2), τ̄) as defined in the proof of Theorem B.1.
The additional constraints yi ≤M and

∑m
j=r∗+1 vj ≤ λq come from the conditions ∥X2∥2 ≤M and

∥∇h(X∗)∥∗ ≤ λ(r∗ + q) (see Theorem 5.1(ii)) and the observation that (see (B.2))

∥∇h(X∗)∥∗ = tr(D2) = λr∗ +

m∑
j=r∗+1

vj .

This proves (ii).
Assume (ii), we can construct h as in the proof of Theorem B.1, and we note that (B.10) holds

with µ = 0, which corresponds to (C.1a).

Similarly, we would introduce a new variable w to decouple x and g as in Section B.

sup
x,g,y,v∈Rm

τ∈Pm,w∈R

m∑
i=1

(Lxi + gi)vτ(i) +

m∑
i=1

gi(Lyτ(i) + vτ(i))

−
m∑
i=1

(Lxi + gi)gi −
m∑
i=1

(Lyi + vi)vi

s.t. ∀i ∈ [r], xi ≥ w > 0, gi = λ,

∀i ∈ [r∗], 0 < yi ≤M, vi = λ,

m∑
j=r∗+1

vj ≤ λq,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, λ+ Lw],
∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, λ].

(C.2)

Moreover, we similarly have the next result.
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Proposition C.2. There exists a (x, g, y, v, τ) with ∥g∥∞ > λ satisfying (C.1a)–(C.1c) if and only
if there exists a feasible solution (x, g, y, v, τ, w) with ∥g∥∞ > λ to (C.2) having nonnegative objective
function value.

The next lemma considers how to solve (C.2) when w and τ are fixed. We note that here we also
set λ = 1 to simplify the calculation.

Lemma C.3. Let r∗ ∈ [m] ∪ {0}, r ∈ [m], q ∈ [0,m − r∗] and L, M̂ ∈ (0,∞). Let τ ∈ Pm and
w > 0. Let {J τ

i }i∈[4] be defined in (B.13). Consider the following optimization problem:

sup
x,g,y,v∈Rm

m∑
i=1

(Lxi + gi)vτ(i) +

m∑
i=1

gi(Lyτ(i) + vτ(i))−
m∑
i=1

(Lxi + gi)gi −
m∑
i=1

(Lyi + vi)vi

s.t. ∀i ∈ [r], xi ≥ w, gi = 1, ∀i ∈ [r∗], 0 < yi ≤ M̂, vi = 1,

m∑
j=r∗+1

vj ≤ q,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1].

(C.3)

Then, the optimization problem (C.3) has optimal solutions, and the optimal value is{
(q − |J τ

2 |)(Lw + 1− q
|J τ

2 | ) + |J
τ
3 |L2(M̂ −min{w, M̂/2})min{w, M̂/2} if q < |J τ

2 |,
|J τ

3 |L2(M̂ −min{w, M̂/2})min{w, M̂/2} otherwise.
(C.4)

Moreover, the following statements are equivalent:

� |J τ
3 | > 0.

� For all the optimal solutions (x̄, ḡ, ȳ, v̄) of (C.3), we have ∥ḡ∥∞ > 1.

� There exists one optimal solution (x̄, ḡ, ȳ, v̄) of (C.3) such that ∥ḡ∥∞ > 1.

Proof. Recalling the definition of {J τ
i }i∈[4] in (B.13), we can decompose (C.3) into two separate

problems:

sup
{xi,gi,yτ(i),vτ(i)}i∈Jτ

2 ∪Jτ
4

∑
i∈J τ

2 ∪J τ
4

[
(Lxi + gi)vτ(i) + gi(Lyτ(i) + vτ(i))

−(Lxi + gi)gi − (Lyτ(i) + vτ(i))vτ(i)
]

s.t. ∀i ∈ J τ
2 , xi ≥ w, gi = 1, yτ(i) = 0, vτ(i) ∈ [0, 1],

∀i ∈ J τ
4 , xi = 0, gi ∈ [0, 1 + Lw], yτ(i) = 0, vτ(i) ∈ [0, 1],∑

j∈J τ
2 ∪J τ

4

vτ(j) ≤ q.

(C.5)

sup
{xi,gi,yτ(i),vτ(i)}i∈Jτ

1 ∪Jτ
3

∑
i∈J τ

1 ∪J τ
3

[
(Lxi + gi)vτ(i) + gi(Lyτ(i) + vτ(i))

−(Lxi + gi)gi − (Lyτ(i) + vτ(i))vτ(i)
]

s.t. ∀i ∈ J τ
1 , xi ≥ w, gi = 1, 0 < yτ(i) ≤ M̂, vτ(i) = 1,

∀i ∈ J τ
3 , xi = 0, gi ∈ [0, 1 + Lw], 0 < yτ(i) ≤ M̂, vτ(i) = 1.

(C.6)

where in (C.5) we have used τ(J τ
2 ∪ J τ

4 ) = [m] \ [r∗] by (B.13) to transform the constraint∑m
j=r∗+1 vj ≤ q to the constraint

∑
j∈J τ

2 ∪J τ
4
vτ(j) ≤ q.
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We first try to solve (C.5). Denote the objective function in (C.5) by S24. Using the constraints
in (C.5), we see that for all ({xi, gi, yτ(i), vτ(i)}i∈J τ

2 ∪J τ
4
) feasible to (C.5), we have

S24({xi, gi, yτ(i), vτ(i)}i∈J τ
2 ∪J τ

4
)

(a)
=

∑
i∈J τ

2

[
(Lxi + 1)vτ(i) + vτ(i) − (Lxi + 1)− v2τ(i)

]
+

∑
i∈J τ

4

[
givτ(i) + givτ(i) − g2i − v2τ(i)

]
=

∑
i∈J τ

2

[
Lxi(vτ(i) − 1)− (vτ(i) − 1)2

]
−

∑
i∈J τ

4

(gi − vτ(i))
2

(C.7)

where in (a) we have used the following constraints in (C.5):

∀i ∈ J τ
2 , gi = 1, yτ(i) = 0; ∀i ∈ J τ

4 , xi = 0, yτ(i) = 0. (C.8)

By performing maximization with respect to {gi}i∈J τ
4
over the constraint set of (C.5), we see that

G24({xi, vτ(i)}i∈J τ
2
, {vτ(i)}i∈J τ

4
) := sup

∀i∈J τ
4 , gi∈[0,1+Lw]

S24({xi, gi, yτ(i), vτ(i)}i∈J τ
2 ∪J τ

4
)

(a)
=

∑
i∈J τ

2

[
Lxi(vτ(i) − 1)− (vτ(i) − 1)2

]
,

(C.9)

where in (a) we have used the fact that vτ(i) ∈ [0, 1] for all i ∈ J τ
4 to show that the optimal value

is achievable; moreover, this optimal value is achieved if and only if:

∀i ∈ J τ
4 , gi = vτ(i). (C.10)

Consequently, (C.5) is equivalent to that

sup
{xi,vτ(i)}i∈Jτ

2
,{vτ(i)}i∈Jτ

4

∑
i∈J τ

2

[
Lxi(vτ(i) − 1)− (vτ(i) − 1)2

]
s.t. ∀i ∈ J τ

2 , xi ≥ w, vτ(i) ∈ [0, 1].

∀i ∈ J τ
4 , vτ(i) ∈ [0, 1],

∑
j∈J τ

2 ∪J τ
4

vτ(j) ≤ q.

(C.11)

Notice that the objective function in (C.11) is irrelevant to {vτ(i)}i∈J τ
4
. Performing maximization

with respect to {vτ(i)}i∈J τ
4
, we see that (C.11) is equivalent to that

sup
{xi,vτ(i)}i∈Jτ

2

∑
i∈J τ

2

[
Lxi(vτ(i) − 1)− (vτ(i) − 1)2

]
s.t. ∀i ∈ J τ

2 , xi ≥ w, vτ(i) ∈ [0, 1],
∑
j∈J τ

2

vτ(j) ≤ q.
(C.12)

Moreover, this is achieved if and only if:

∀i ∈ J τ
4 , vτ(i) ∈ [0, 1];

∑
j∈J τ

2 ∪J τ
4

vτ(j) ≤ q. (C.13)

Next, performing maximization with respect to {xi}i∈J τ
2
in (C.12), we see that (C.12) is equivalent

to that
sup

{vτ(i)}i∈Jτ
2

∑
i∈J τ

2

[
Lw(vτ(i) − 1)− (vτ(i) − 1)2

]
s.t. ∀i ∈ J τ

2 , vτ(i) ∈ [0, 1],
∑
j∈J τ

2

vτ(j) ≤ q.
(C.14)
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This is achieved if and only if:

∀i ∈ J τ
2 ,

{
xi = w if vτ(i) < 1,

xi ∈ [w,∞) if vτ(i) = 1.
(C.15)

Denote the objective function in (C.14) by V2. Notice that when J τ
2 ̸= ∅, V2 can be rewritten as:

V2({vτ(i)}i∈J τ
2
)
(a)
= |J τ

2 |Lw(v̄ − 1)−
∑
i∈J τ

2

(vτ(i) − v̄ + v̄ − 1)2

= |J τ
2 |Lw(v̄ − 1)− |J τ

2 |(v̄ − 1)2 −
∑
i∈J τ

2

(vτ(i) − v̄)2 − 2(v̄ − 1)
∑
i∈J τ

2

(vτ(i) − v̄)

= |J τ
2 |Lw(v̄ − 1)− |J τ

2 |(v̄ − 1)2 −
∑
i∈J τ

2

(vτ(i) − v̄)2,

where in (a) we set v̄ = 1
|J τ

2 |
∑

i∈J τ
2
vτ(i). This motivates us to introduce an auxiliary variable v̄ ∈ R,

to transform (C.14) to the following problem:

sup
v̄∈R

sup
{vτ(i)}i∈Jτ

2

|J τ
2 |Lw(v̄ − 1)− |J τ

2 |(v̄ − 1)2 −
∑
i∈J τ

2

(vτ(i) − v̄)2,

s.t. ∀i ∈ J τ
2 , vτ(i) ∈ [0, 1],

∑
i∈J τ

2

vτ(i) = |J τ
2 |v̄, |J τ

2 |v̄ ≤ q.
(C.16)

By solving the inner problem of (C.16), we see that (C.16) is equivalent to the following problem:

sup
v̄∈R

|J τ
2 |Lw(v̄ − 1)− |J τ

2 |(v̄ − 1)2,

s.t. v̄ ∈ [0, 1], |J τ
2 |v̄ ≤ q.

(C.17)

Moreover, the optimal value of the inner problem is achieved if and only if

∀i ∈ J τ
2 , vτ(i) = v̄. (C.18)

The optimization problem in (C.17) is an elementary univariate quadratic optimization problem.
We can directly see that the optimal value V ∗

2 of (C.17) is

V ∗
2 :=

{
(q − |J τ

2 |)(Lw + 1− q
|J τ

2 | ) if q < |J τ
2 |,

0 if q ≥ |J τ
2 |,

(C.19)

and it is achieved if and only if

v̄ =

{
q

|J τ
2 | if q < |J τ

2 |,
1 if q ≥ |J τ

2 |.
(C.20)

Combining (C.10), (C.13), (C.15), (C.18) and (C.20), we see the optimal solution ({x̂i, ĝi, ŷτ(i), v̂τ(i)}i∈J τ
2 ∪J τ

4
)

to (C.5) is given by

∀i ∈ J τ
2 , x̂i ∈

{
{w} if q < |J τ

2 |,
[w,∞) if q ≥ |J τ

2 |,
ĝi = 1, ŷτ(i) = 0, v̂τ(i) =

{
q

|J τ
2 | if q < |J τ

2 |,
1 if q ≥ |J τ

2 |,

∀i ∈ J τ
4 , x̂i = 0, ĝi = v̂τ(i), ŷτ(i) = 0, v̂τ(i) ∈ [0, 1] s.t.

∑
j∈J τ

2 ∪J τ
4

vτ(j) ≤ q.
(C.21)

Next, our goal is to solve (C.6). Since (C.6) is separable, we would solve it for each fixed i.
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1. i ∈ J τ
1 . Then (C.6) has the following form:

sup
xi,yτ(i)

(Lxi + 1) + (Lyτ(i) + 1)− (Lxi + 1)− (Lyτ(i) + 1)

s.t. xi ≥ w, 0 < yτ(i) ≤ M̂,
(C.22)

Denote the objective function in (C.22) by S1. We see that

S1(xi, yτ(i)) ≡ 0, (C.23)

and every feasible solution to (C.22) is optimal.

2. i ∈ J τ
3 . Then (C.6) has the following form:

sup
gi,yτ(i)

gi + gi(Lyτ(i) + 1)− g2i − (Lyτ(i) + 1)

s.t. gi ∈ [0, 1 + Lw], 0 < yτ(i) ≤ M̂,
(C.24)

Denote the objective function in (C.24) by S3. By direct calculation we can rewrite S3 as

S3(xi, yτ(i)) = (gi − 1)Lyτ(i) − (gi − 1)2.

When gi ≤ 1, we see that S3(xi, yτ(i)) ≤ 0, and when gi > 1, we see that S3 is increasing as a
function of yτ(i) when fixing gi, this means when gi > 1 it holds that

sup
yτ(i)∈(0,M̂ ]

S3(xi, yτ(i)) = (gi − 1)LM̂ − (gi − 1)2.

Moreover, this is achieved if and only if yτ(i) = M̂ . Maximizing with respect to gi ∈ (1, 1+Lw],
we see that the quadratic function on the right hand side of the above display is maximized
at gi = 1 + Lmin{M̂/2, w}. Consequently, the optimal value (C.24) is

L2(M̂ −min{w, M̂/2})min{w, M̂/2}. (C.25)

and is attained at
yτ(i) = M̂, gi = 1 + Lmin{M̂/2, w}. (C.26)

The optimal value of (C.3) is obtained by summing the optimal values given in (C.19), (C.23) and
(C.25), and the characterization of the optimal solution follows from the optimal solutions given in
(C.21), (C.23) and (C.26). Moreover, every solution (x̄, ḡ, ȳ, v̄) of (C.3) satisfies ∥ḡ∥∞ > 1 if and
only if |J τ

3 | > 0, according to the structure of ḡ given in (C.21), (C.23) and (C.26).

Lemma C.4. Let r∗ ∈ [m] ∪ {0}, r ∈ [m], 0 ≤ q ≤ m − r∗ and L,M ∈ (0,∞). Let the objective
function of (C.2) be G. Suppose that W ∗ is the optimal value of the next optimization problem:

sup
d∈N0

(q − d)(1− q

d
) +

(q − d+ LM(r∗ − r + d)/λ)2

4(r∗ − r + d)
s.t. max{r − r∗ + 1, 1} ≤ d ≤ min{r,m− r∗}, q − d+ LM(r∗ − r + d)/λ > 0.

If r, r∗, L, M , q, W ∗ satisfy any of the following conditions, then (C.2) has no feasible solution
(x̄, ḡ, ȳ, v̄, τ̄ , w̄) with ∥ḡ∥∞ > λ and G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0.

(1) r∗ = 0.
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(2) r∗ > 0, r ≥ r∗ + ⌊q⌋, and W ∗ < 0.

Otherwise, such a feasible solution exists.

Proof. The whole proof is similar to Theorem B.4, but since the optimization steps are different, we
here present all the details. First, we do the variable change (x, g, y, v, τ, w)← (x/λ, g/λ, y/λ, v/λ, τ, w/λ)
for (C.2), and then get the next optimization problem:

sup
x,g,y,v∈Rm

τ∈Pm,w∈R

λ2

( m∑
i=1

(Lxi + gi)vτ(i)+

m∑
i=1

gi(Lyτ(i) + vτ(i))−
m∑
i=1

(Lxi + gi)gi−
m∑
i=1

(Lyi + vi)vi

)

s.t. ∀i ∈ [r], xi ≥ w > 0, gi = 1, ∀i ∈ [r∗], 0 < yi ≤ M̂, vi = 1,

m∑
j=r∗+1

vj ≤ q,

∀i ∈ [m] \ [r], xi = 0, gi ∈ [0, 1 + Lw], ∀i ∈ [m] \ [r∗], yi = 0, vi ∈ [0, 1],

(C.27)

where M̂ = M
λ . Next, define the following function H : N0 × R+ → R:

H(d,w) :=

{
(q − d)(Lw + 1− q

d ) +H0(d,w) if q < d,

H0(d,w) otherwise.
(C.28)

where H0(d,w) := (r∗ − r + d)L2(M̂ − min{w, M̂/2})min{w, M̂/2}. Then in view of (B.14) and
(C.4), the optimal value of (C.3) is given by H(|J τ

2 |, w).
Using Theorem C.3 and the definition of H in (C.28), upon dropping λ2 in the objective function

since it would not affect the sign of the function value, we can consider (C.29) instead because our
claim only concerns the feasible set of (C.2) and the sign of its objective value:

sup
w∈R, d∈N0

H(d,w) s.t. w > 0, r − r∗ ≤ d ≤ min{r,m− r∗}, (C.29)

where the constraint on d comes from the requirement that |J τ
i | ≥ 0 for all i ∈ [4] (see (B.14)).

We consider the following scenarios:

(S1) The optimal value of (C.29) is nonpositive, and (C.29) has no feasible solution (d,w) satisfying
H(d,w) ≥ 0 and r∗ − r + d > 0.

In this scenario, we claim that (C.2) has no feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) with ∥ḡ∥∞ > λ
and G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0. A short proof is provided below.

Suppose such a feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) of (C.2) exists, then either (x̄, ḡ, ȳ, v̄)/λ is
optimal for (C.3) with τ = τ̄ and w = w̄/λ, or (x̄, ḡ, ȳ, v̄)/λ is not optimal. In the latter case,
the optimal value of (C.29) must be positive. In the former case, we see from Theorem C.3
that |J τ

3 | > 0, and hence (C.29) has a feasible solution (d̃, w̃) := (|J τ̄
2 |, w̄/λ) with H(d̃, w̃) ≥ 0

and r∗ − r + d̃ = r∗ − r + |J τ̄
2 | = |J τ̄

3 | > 0 (see (B.14)). Both cases yield a contradiction.

(S2) There exists a feasible solution (d̃, w̃) of (C.29) satisfying H(d̃, w̃) ≥ 0 and r∗ − r + d̃ > 0.
In this scenario, (C.2) has a feasible solution (x̄, ḡ, ȳ, v̄, τ̄ , w̄) with G(x̄, ḡ, ȳ, v̄, τ̄ , w̄) ≥ 0 and
∥ḡ∥∞ > λ. Indeed, we just need to take a τ̄ ∈ Pm with |J τ̄

2 | = d̃, and then take (x̃, g̃, ỹ, ṽ) to
be the optimal solution of (C.3) with τ = τ̄ and w = w̃, and set (x̄, ḡ, ȳ, v̄, w̄) = λ(x̃, g̃, ỹ, ṽ, w̃).

Consider the following cases:

Case 1: r∗ = 0. In this case, we see that every feasible solution (d,w) of (C.29) satisfies d = r and
hence r∗ − r + d = 0, and the optimal value of (C.29) is nonpositive. Then (S1) holds.
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Case 2: r∗ > 0 and r ≤ r∗ + ⌊q⌋ − 1. In this case, we can set d = r − r∗ + 1 and w = M̂/2, which is
feasible due to that r − r∗ + 1 ≤ r and r − r∗ + 1 ≤ ⌊q⌋ ≤ m − r∗. Then r∗ − r + d = 1 and
d ≤ ⌊q⌋ ≤ q. Thus,

H(d,w) = H0(d,w) = (r∗ − r + d)L2(M̂ −min{w, M̂/2})min{w, M̂/2} = L2M̂2

4
.

Hence (S2) holds.

Case 3: r∗ > 0 and r ≥ r∗ + ⌊q⌋. Consider the following problem:

sup
w∈R,d∈N0

(q − d)(1+wL− q

d
)+L2(r∗−r+d)(M̂−min{w, M̂/2})min{w, M̂/2}

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, w > 0;
(C.30)

notice that d ≥ r − r∗ + 1 ≥ ⌊q⌋ + 1 > q for all (w, d) feasible for (C.30), and hence the
objective of (C.30) equals the H(d,w) defined in (C.28). Observe that (C.30) is obtained by
excluding d = r − r∗ from (C.29), and we have by direct computation that H(r − r∗, w) ≤
H0(r − r∗, w) = 0. Thus, if (C.30) has a feasible solution (d,w) with H(d,w) ≥ 0, then (S2)
holds; otherwise (S1) holds.

Note the objective in (C.30) is nonincreasing on [ M̂2 ,∞) as a function of w when d is fixed.
Hence, it holds that (C.30) has a feasible solution (d,w) with H(d,w) ≥ 0 if and only if the
following optimization problem has a feasible solution (d,w) with nonnegative objective value:

sup
w∈R,d∈N0

H1(d,w) := (q − d)(1 + wL− q

d
) + L2(r∗ − r + d)(M̂w − w2)

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, w ∈ (0, M̂/2].
(C.31)

Let α = q−d+L(r∗−r+d)M̂
2L(r∗−r+d) , and we note that α < M̂/2 since d > q. We rewrite H1 as follows:

H1(d,w) = (q − d)(1− q

d
) + L(L(r∗ − r + d)M̂ + (q − d))w − L2(r∗ − r + d)w2

= (q − d)(1− q

d
)− L2(r∗ − r + d)[(w − α)2 − α2].

We can now rewrite (C.31) as:

sup
w∈R,d∈N0

H1(d,w) = (q − d)(1− q

d
)− L2(r∗ − r + d)[(w − α)2 − α2]

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, w ∈ (0, M̂/2],

α =
q − d+ L(r∗ − r + d)M̂

2L(r∗ − r + d)
.

(C.32)

If the choice of d makes α ≤ 0, then we have (w − α)2 − α2 = w2 − 2αw > 0, which together
with r∗ − r + d ≥ 1 > 0 implies that

H1(d,w) < (q − d)(1− q

d
)
(a)
< 0,

where in (a) we have used d > q. Therefore, (C.32) has a feasible solution with nonnegative
function value if and only if it does so when α > 0. This leads us to consider the following
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problem:

sup
w∈R,d∈N0

(q − d)(1− q

d
)− L2(r∗ − r + d)[(w − α)2 − α2]

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, w ∈ (0, M̂/2],

α =
q − d+ L(r∗ − r + d)M̂

2L(r∗ − r + d)
> 0.

(C.33)

Maximizing with respect to w and noticing that α < M̂
2 , we see that (C.33) and the follow-

ing problem must have or do not have a feasible solution with nonnegative function value
simultaneously:

sup
d∈N0

(q − d)(1− q

d
) + L2(r∗ − r + d)α2

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, α =
q − d+ L(r∗ − r + d)M̂

2L(r∗ − r + d)
> 0.

(C.34)

Simplifying this problem, we obtain

sup
d∈N0

(q − d)(1− q

d
) +

(q − d+ LM̂(r∗ − r + d))2

4(r∗ − r + d)

s.t. r − r∗ + 1 ≤ d ≤ min{r,m− r∗}, q − d+ LM̂(r∗ − r + d) > 0.

(C.35)

The problem (C.35) is compactly discrete, and hence optimal value can be always achieved
as long as it is not negative infinity. Therefore, (C.35) has a feasible point with nonnegative
function value if and only if the optimal value of (C.35) is nonnegative, in which case (S2)
holds, and otherwise (S1) holds.
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