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Abstract

Best-of-N reasoning improves the accuracy of language
models in solving complex tasks by sampling multiple can-
didate solutions and then selecting the best one based on
some criteria. A critical bottleneck for this strategy is the
output diversity limit, which occurs when the model gener-
ates similar outputs despite stochastic sampling, and hence
recites the same error. To address this lack of variance in
reasoning paths, we propose a novel unsupervised activation
steering strategy that simultaneously optimizes the steering
vectors for multiple reasoning trajectories at test time. At
any synchronization anchor along the batch generation pro-
cess, we find the steering vectors that maximize the total vol-
ume spanned by all possible intervened activation subsets. We
demonstrate that these steering vectors can be determined by
solving a Riemannian optimization problem over the product
of spheres with a log-determinant objective function. We then
use a Riemannian block-coordinate descent algorithm with a
well-tuned learning rate to obtain a stationary point of the
problem, and we apply these steering vectors until the gener-
ation process reaches the subsequent synchronization anchor.
Empirical evaluations on popular mathematical benchmarks
demonstrate that our test-time Riemannian activation steering
strategy outperforms vanilla sampling techniques in terms of
generative diversity and solution accuracy.

Code — https://github.com/lythk88/SPREAD

1 Introduction
Language models (LMs) have revolutionized tasks from
code generation (Chen et al. 2021), symbolic reasoning (Wei
et al. 2022), to mathematical problem solving (Lewkowycz
et al. 2022). In these tasks, the quality of the final solution
can improve significantly by exploring multiple plausible
reasoning paths and then presenting the best solution aggre-
gated from the information from these paths. This strategy
aligns with our problem-solving intuitions, where each path
of reasoning explores different techniques, generalizabil-
ity, and scientific values. A simple and effective method to
exploit this explore-then-aggregate idea is Best-of-N sam-
pling (Lightman et al. 2023; Ni et al. 2023), where the model
generates N candidates and uses a reward model to select
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the most plausible answer. The final accuracy of this Best-
of-N strategy is constrained by the diversity of the gener-
ated candidates. A straightforward method to encourage ex-
ploration is to use a stochastic sampling decoder when gen-
erating the next token, leading to a zoo of emerging meth-
ods (Fan, Lewis, and Dauphin 2018; Holtzman et al. 2020;
Meister et al. 2023). These methods construct a token-level
search space with varying access to the internals of an LM,
such as logits, next-token distributions, or probability scores.

Yet, stochastic decoding methods frequently suffer from
diversity collapse, where the outputs of LMs may converge
to nearly identical reasoning paths (Yun et al. 2025; Dang
et al. 2025). This phenomenon has sparked more aggressive
search strategies, such as contrastive search (Su and Collier
2023), balancing the model confidence with the degenera-
tion penalty to avoid repetitiveness. Alternatively, Vijayaku-
mar et al. (2016) maintains multiple diverse hypotheses dur-
ing beam search by diversity-promoting objectives. Addi-
tionally, self-speculative decoding (Zhang et al. 2024) and
speculative sampling (Leviathan, Kalman, and Matias 2023)
inherently promote diversity through their multi-step predic-
tion mechanisms. Most of these search strategies are com-
putationally intensive, as they require joint consideration of
reasoning trajectories distribution (Nagarajan et al. 2025).

Another challenge to promoting reasoning diversity is
measuring it. Popular metrics like lexical or semantic diver-
sity may not capture the reasoning diversity well. Lexical
diversity measures the number of different meanings or per-
spectives conveyed among sequences, but is sensitive to text
length, rephrasing, or synonyms (Bestgen 2024). Similarly,
semantic diversity quantifies the different meanings or per-
spectives, but it is sensitive to adding or removing details
from the text (Han, Kim, and Chang 2022). Computation-
ally, both often invoke extra neural architecture for evalua-
tion, thus adding load to the inference process.

In this paper, we look at the reasoning diversity through
another proxy: the diversity of the hidden activations of the
generated sequences. Hidden activations are the internal rep-
resentations computed by a language model at each layer
and token position as it processes input. They encode inter-
mediate computations and abstract concepts, acting as the
latent “thinking space” where reasoning, memory, and struc-
ture are implicitly formed. While there may be strong corre-
lations between the activations and the reasoning paths, there



is unfortunately no one-to-one equivalence between them.
Thus, admittedly, promoting diversity of the hidden activa-
tions does not necessarily lead to diversity in the reason-
ing paths. However, recent progress suggests that encour-
aging diversity among neuron activations within the same
layer increases the capacity of the model to learn a broader
range of features (Laakom et al. 2023). In general, increas-
ing the diversity of hidden activations can reduce estimation
error and improve generalization. Moreover, models that fa-
cilitate diverse internal activations may be better equipped
to represent and synthesize multiple reasoning strategies, as
the richer internal space allows for more varied “thought
paths” (Naik et al. 2023). Recent results in interpretabil-
ity indicate that different features or activation clusters can
sometimes correspond to different “reasoning circuits” or
strategies, especially in LMs (Lindsey et al. 2025). These ob-
servations suggest that we should design fast and parameter-
efficient mechanisms to promote the diversity of hidden ac-
tivations during generation, hoping to induce reasoning di-
versity and improve the accuracy for Best-of-N sampling.
Contributions. We summarize our contributions as follows:

• We propose the SPherical intervention for REAsoning
Diversity (SPREAD), an unsupervised activation steer-
ing method that improves the diversity among reason-
ing trajectories. At a synchronization anchor, SPREAD
extracts the hidden activations from all sequences, then
computes the steering vectors that maximize the total
volume spanned by all possible subsets of the intervened
activations. SPREAD then adds these steering vectors to
the respective activations of all subsequent tokens until
the next synchronization anchor.

• We show that determining the optimal steering vectors
can be reformulated as a manifold optimization prob-
lem defined over the product of spheres, where the log-
determinant objective function captures the geometric di-
versity of the intervened activations. We propose using a
Riemannian block coordinate descent algorithm, which
exploits the product structure of the manifold constraints.
We also study the theoretical properties of the optimiza-
tion problem and prove the convergence guarantee of the
algorithm for appropriate step sizes.

Using the steering methods, SPREAD uses readily avail-
able hidden activations from the generation process and does
not require any additional neural architectures to measure
quality or reasoning diversity. Moreover, SPREAD could
rely on only one hyperparameter that prescribes the relative
radii of the intervention vectors, and it relieves the burden of
parameter tuning at inference time.

Our paper unfolds as follows: Section 2 reviews the re-
lated works on generative diversity and activation steer-
ing, Section 3 presents the mathematical formulation of the
SPREAD framework, Section 4 develops the manifold opti-
mization algorithm for computing the optimal steering vec-
tors, and Section 5 empirically illustrates the performance of
SPREAD on mathematical reasoning tasks.

Notations. The space of p-dimensional vectors is denoted
Rp. For any x ∈ Rp, ∥x∥2 is its Euclidean norm. For a
matrix A ∈ Rp×N , we use ∥A∥F for the Frobenius norm.

We use ∇ℓ(V ) and ∇2ℓ(V ) for the gradient of function ℓ
and Hessian matrix of function ℓ with respect to V in the
Euclidean sense; while grad ℓ and Hess ℓ are the Rieman-
nian counterparts. We use∇iℓ(V ),∇2

i ℓ(V ), gradi ℓ(V ) and
Hessi ℓ(V ) for the corresponding operator with respect to
the i-th block vi while fixing all other blocks. All proofs are
relegated to the appendix.

2 Literature Review

Diversity in generation. Classical approaches, includ-
ing temperature sampling (Ackley, Hinton, and Sejnowski
1985), top-k sampling (Fan, Lewis, and Dauphin 2018), nu-
cleus sampling (Holtzman et al. 2020), and typical decod-
ing (Meister et al. 2023), promote output diversity by in-
troducing stochasticity into the generation process. Prompt-
centric techniques have also been shown to enrich the di-
versity of reasoning. Li et al. (2023b) focuses on prompt di-
versity by generating diverse prompts to explore different
reasoning paths, while filtering out incorrect answers by a
weighted voting scheme. Naik et al. (2023) proposes a self-
reflective prompting that leverages the LLM as a guide to
design a diverse set of approaches for complex reasoning
tasks. Wang et al. (2025) uses multiple adaptive steering
vectors for different hallucination types, though maintaining
multiple vectors is computationally expensive. Chung et al.
(2025) achieves diversity through parameter-efficient prefix
tuning, but effectiveness is sensitive to training data quality.

Activation Steering is a lightweight and interpretable
method for controlling LMs. This approach injects direc-
tion vectors into the residual stream of transformer layers to
steer generation toward desired attributes (e.g., truthfulness,
sentiment, toxicity) without modifying model weights. Con-
trastive steering methods derive directions by comparing
activations between positive and negative examples of de-
sired behaviors. Turner et al. (2023) computes steering vec-
tors by averaging residual stream differences between fac-
tual and hallucinatory responses, while Stolfo et al. (2025)
contrasts activations with and without specific instructions.
Probe-based steering methods instead learn to identify rele-
vant concepts through trained classifiers, then extract steer-
ing directions from the learned representations (Li et al.
2023a; Zhang et al. 2025). Despite demonstrating effective-
ness across domains like toxicity reduction (Zhang et al.
2025), and truthfulness enhancement (Turner et al. 2023),
activation steering restricts its broader applicability. Most
existing approaches rely on single, fixed direction vectors
that constrain model outputs to narrow behavioral modes.
The challenge becomes even more pronounced in mathemat-
ical reasoning, where defining clear positive and negative
exemplars for contrastive learning is inherently difficult be-
cause mathematical correctness involves complex, context-
dependent logical structures that resist simple binary clas-
sification. These domain-specific challenges explain why
prior activation steering research has largely avoided math-
ematical reasoning applications.
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Figure 1: Overview of SPREAD for generating N diverse reasoning answers simultaneously. At each decoding step τt, we
extract the hidden vectors corresponding to the last token in each path. These hidden vectors serve as inputs to Algorithm 1,
where they are projected into a shared activation space to compute N steering vectors. This process is repeated until an end-of-
sequence EOS token is generated.

3 Activation Steering for Diverse Generation
under the Optimization Lens

We aim to elicit diverse reasoning paths from an LM at
test time without any fine-tuning by sampling multiple se-
quences per input prompt. Figure 1 shows the core idea of
the SPREAD framework, which intervenes directly in the
model’s activation space during the autoregressive gener-
ation process. Specifically, we simultaneously generate N
output sequences and extract the final hidden state vectors
after τ tokens, H = [h1, . . . , hN ] ∈ Rp×N , for all se-
quences. We then compute an additive steering vector vi
for each hidden state hi, yielding a new set of hidden states
Hnew = H + V , where V = [v1, . . . , vN ]. The core of our
approach is to maximize a geometric measure of diversity
for Hnew (2), or equivalently with respect to the steering
vectors V . A natural measure for the dispersion of a set of
vectors is the volume of the parallelepiped they span.
Definition 1 (Parallelepiped). Given n vectors h1, . . . , hn ∈
Rp, the parallelepiped is their convex hull:

P({h1, . . . , hn}) ≜

{
h ∈ Rp : h =

n∑
i=1

λihi, λ ∈ [0, 1]n

}
.

To encourage robust diversity, we require that not only the
entire set of N steered vectors be diverse, but that any subset
of these vectors also be diverse. This prevents degenerate
solutions where, for instance, N − 1 vectors are clustered
together and only one is pushed far away. Let I ∈ 2[N ] be any
index subset of the N sequences. We aim to maximize the
sum of the squared volumes of the parallelepiped associated
with all possible subsets:

max
∀i:∥vi∥2

2≤αi

∑
I∈2[N]

Volume(P({hi + vi}i∈I))
2, (1)

where αi is a magnitude for the intervention vector vi on
the i-th path. The squared norm constraints effectively keep
the modified hidden state hi + vi within a “trust region”
of moderate radius

√
αi around the original state hi. If αi

is too big, the vector vi could erase meaningful informa-
tion stored in hi, leading to generation collapse. The next
proposition gives an explicit form of the objective function
in Problem (1) as a log-determinant function.
Proposition 2 (Objective function equivalence). Prob-
lem (1) is equivalent to the following log-determinant op-
timization problem

min
∀i:∥vi∥2

2≤αi

V=[v1,...,vN ]

ℓ(V ) ≜ − log det[I+(H+V )⊤(H+V )]. (2)

Problem (2) has a convex feasible set, but its objective
function ℓ is non-convex, as illustrated in the next example.
Example 3 (Non-convexity of ℓ). Take

H =

[
1 0
0 1

]
, V1 =

[
0 0
0 0

]
, V2 =

[
−2 0
0 −2

]
,

and V3 = 1
2 (V1 + V2). Then ℓ(V1) = ℓ(V2) = − log 4 and

ℓ(V3) = 0. We find 2ℓ(V3)− (ℓ(V1)+ ℓ(V2)) = 2 log 4 > 0,
which implies that ℓ is not convex.

Problem (2) turns out to be a non-convex problem, and it
is, in general, NP-hard to find its global optimum (Jin et al.
2021). However, we can show a qualitative result asserting
that the optimal steering vectors of Problem (1) will make
the norm constraint ∥vi∥22 ≤ αi binding, and we obtain an-
other equivalent problem with equality constraints.
Proposition 4 (Constraint equivalence). Problem (1) is fur-
ther equivalent to the following log-determinant optimiza-
tion problem with equality constraints

min
{
ℓ(V ) : ∥vi∥22 = αi, V = [v1, . . . , vN ]

}
. (3)

The equality constraints ∥vi∥22 = αi are no longer con-
vex. However, the advantage of the reformulation (3) is that
we can cast Problem (3) as an optimization problem over a
Riemannian manifold. In the next section, we will describe
the procedure for solving Problem (3) with manifold opti-
mization methods.



Figure 2: An illustration of the volume maximization intu-
ition behind SPREAD. The hidden vectors h1 and h2 (orig-
inally blue squares) are pushed toward target positions us-
ing the corresponding steering vectors v1, v2, found via Rie-
mannian Block Coordinate Descent (Algorithm 1). After in-
tervention, the new parallelepiped (red) has a larger volume
than the original parallelepiped (dashed blue).

Hyperparameters. Problem (1) and its equivalent form (3)
requires N radii values {αi}Ni=1 as input hyperparameters.
We propose to set αi = C∥hi∥2/p for all i, where p is the
dimension of hi, and thus the number of hyperparameters is
reduced to only one relative parameter C > 0.

4 Manifold Optimization for Steering
This section is to devise an efficient algorithm for solving
Problem (3) based on Riemannian optimization. Formally,
we letMi be the sphere in Rp of radius

√
αi:

Mi = {vi ∈ Rp : ∥vi∥22 = αi},

and define the product manifold M = M1 × · · · × MN .
Problem (3) can be cast as a Riemannian optimization prob-
lem over the product manifoldM, which is naturally solved
using Riemannian optimization algorithms.

4.1 Preliminaries about the ManifoldM
Riemannian optimization exploits the geometric structure of
the constraint set to perform updates along curved spaces
(manifolds) rather than flat Euclidean space. Key tools in-
clude (i) the Riemannian gradient, which generalizes classi-
cal gradient methods to manifold settings, and (ii) the expo-
nential map, which generalizes the concept of moving in a
straight line along a gradient in Euclidean space to moving
along a shortest path on a manifold.

At a point on a manifold, a tangent space is a vector space
that “touches” the manifold at that point and contains all
possible directions in which one can move along the man-
ifold from that point. For an individual sphere, the tangent
space at vi ∈Mi is

TviMi = {z ∈ Rp : z⊤vi = 0}.

For the product manifold, the tangent space at V =
[v1, . . . , vN ] is

TVM = {Z = (z1, . . . , zN ) : zi ∈ TviMi ∀i}.

The Riemannian gradient of ℓ defined on the manifold M
is the steepest ascent direction that lies within the tangent
space of the manifold at a given point. It is computed by
first taking the Euclidean gradient of ℓ in the ambient space
Rp×N , and then projecting this gradient onto the tangent
space of the manifold. Let G ∈ Rp×N be the computed Eu-
clidean gradient of ℓ at V , the projection of G onto TVM is
decomposable into N projections of the columns gi onto the
tangent space of the individual sphereMi

ProjTvi
Mi

(gi) = (I − 1

αi
viv

⊤
i )gi ∀i.

The next lemma formalizes the computation of the Rieman-
nian gradient for ℓ.
Lemma 5. For any V = [v1, . . . , vN ] ∈ M, the Rieman-
nian gradient of ℓ in the i-th block is given by

gradiℓ(V ) = gi −
1

αi
g⊤i vivi ∈ Rp, (4)

where gi = −2((H + V )M−1)i ∈ Rp and M = I + (H +
V )⊤(H+V ). Furthermore, the Riemannian gradient of ℓ at
point V corresponding to the product manifoldM is given
by gradℓ(V ) = [grad1ℓ(V ), . . . , gradNℓ(V )].

The negative Riemannian gradient at V gives the direc-
tion of steepest descent within the tangent space. The expo-
nential map then moves the incumbent solution along this
direction, not in a straight line, but along a curved path
that fits the spherical surface. This allows us to take mean-
ingful steps while staying on the manifold throughout the
iterations. Given the descent direction di = −gradiℓ(V )
and a step size ηi for the i-th block, the exponential map
gives (Boumal 2023, Section 10.2)

Expvi(ηidi) = (5)

cos(
ηi∥di∥2√

αi
)vi + sin(

ηi∥di∥2√
αi

)
di
∥di∥2

√
αi ∈Mi.

Given Expvi(ηidi) in (5), the exponential map on the prod-
uct manifoldM is given by

ExpV ([η1d1, . . . , ηNdN ]) = (6)
[Expv1(η1d1), . . . ,ExpvN (ηNdN )] ∈M.

4.2 Block-Coordinate Riemannian Descent
Since our manifold M decomposes as a product of scaled
spheres, its natural block structure allows one global up-
date to be replaced by N cheaper spherical updates. Con-
sequently, Riemannian Block-coordinate Descent (Gutman
and Ho-Nguyen 2023) provides an intuitive and efficient
method for Problem (3).

In the outer iteration k, Algorithm 1 updates the blocks vi
sequentially for i = 1, . . . , N . Fixing all other blocks at their
most recent values, it first computes the Euclidean gradient
gi. In Line 5, gi is then projected onto the tangent space to



Algorithm 1: Riemannian Block Coordinate Descent on Product of Spheres with Exponential Maps

Require: Hidden activation vectors {hi}Ni=1, magnitudes {αi}Ni=1, learning rate ηi > 0, max iterations K
1: Initialize v

(0)
i using (7)

2: for k = 1 to K do
3: for i = 1 to N do
4: Compute Euclidean gradient in the variable vi by gi ← ∇iℓ(v

(k)
1 , . . . , v

(k−1)
i , . . . , v

(k−1)
N )

5: Compute the descent direction di ← −gi + 1
αi
((v

(k−1)
i )⊤gi) v

(k−1)
i

6: Compute v
(k)
i ← cos(ηi∥di∥2√

αi
)v

(k−1)
i + sin(ηi∥di∥2√

αi
) di

∥di∥2

√
αi

7: end for
8: end for
9: return V (K) = [v

(K)
1 , . . . , v

(K)
N ]

yield the Riemannian descent direction di, and then Line 6
moves v(k−1)

i along the geodesic onMi via the exponential
map (5), thus preserving its feasibility on the sphere.

Initialization. To get a feasible initial point, for each i,
we can initialize v

(0)
i by

v
(0)
i =

√
αi

hi + εi − h̄

∥hi + εi − h̄∥2
∀i. (7)

where εi ∼ N (0, σ2Id) are independent Gaussian noise
with small variances and h̄ = 1

N

∑N
i=1 hi is the centroid

of the hidden vectors {hi}Ni=1.

4.3 Convergence Analysis
We now study the convergence guarantee of Algorithm 1.
The next theorem asserts the convergence of Algorithm 1 for
solving Problem (3) with well-chosen step sizes. To this end,
let ᾱ ≜

∑N
i=1 αi be the total radii, and for each sequence i,

define the quantity

Li ≜ 2+4(∥H∥F +
√
ᾱ)2+

2
√
αi

(∥H∥F +
√
ᾱ) ∀i. (8)

Theorem 6 (Convergence of Algorithm 1). Let V (k) =

[v
(k)
1 , . . . , v

(k)
N ] be the sequence generated from Algorithm 1

with learning rate ηi = 1/Li for i = 1, . . . , N . Define

C ≜
L2
min

4Lmax(L2
min + L2N(N − 1))

,

where Lmin = mini Li and Lmax = maxi Li. Then, the
following hold:
• We have limk→∞ ∥grad ℓ(V (k))∥F = 0 and

min
s≤k
∥grad ℓ(V (s))∥F ≤

√
ℓ(V (0))− ℓ⋆

Ck
,

where ℓ⋆ is the optimal value of Problem (3).
• Any limit point V ∞ ∈ M of {V (k)}k≥1 is a stationary

point, i.e., grad ℓ(V ∞) = 0.
Theorem 6 establishes both asymptotic and non-

asymptotic convergence results for Algorithm 1. It guaran-
tees that any limit point of the generated sequence is a sta-
tionary point of the objective function. The sublinear rate

O(1/
√
k) for the minimum gradient norm bounds the num-

ber of iterations needed to achieve a desired accuracy level.
To analyze the convergence of the algorithm, we study the

smoothness of the objective function. Firstly, we recite the
L-smoothness definition in the Riemannian sense (Gutman
and Ho-Nguyen 2023, equation (3)).
Definition 7 (L-smoothness). The function ℓ : M → R is
L-smooth if for all V ∈M, U ∈ TVM and Z = ExpV (U)
it holds that

∥ΓU
V→Z gradℓ(V )− gradℓ(Z)∥F ≤ L∥U∥F ,

where ΓU
V→Z : TVM → TZM is the parallel transport

operator along the curve γ(t) = ExpV (tU).
The following lemma shows that the objective function

ℓ(V ) of Problem (3) satisfies Definition 7 with an explicit
Lipschitz constant L.
Proposition 8 (Smoothness). Let αmin ≜ mini αi > 0. The
objective function ℓ(V ) is L-smooth, with constant

L = 2 + 4(∥H∥F +
√
ᾱ)2 +

2
√
αmin

(∥H∥F +
√
ᾱ). (9)

We further show that the function ℓ also satisfies the block
smoothness, which is defined by restricting Definition 7 to
each individual sphereMi.
Proposition 9 (Block smoothness). Let V = [v1, . . . , vN ] ∈
M, U = [u1, . . . , uN ] ∈ TVM and Z = ExpV (U). For
any vi and ui ∈ TviMi, it holds that
∥Γui

vi→zi gradiℓ(V )− gradiℓ(Z)∥F ≤ Li∥ui∥2 (10)
with Li defined in (8). Here Γui

vi→zi : TviMi → TziMi

is the parallel transport operator along the curve γ(t) =
Expvi(tui).

Proposition 9 is crucial both for establishing the con-
vergence of Algorithm 1 and for guiding the selection of
its step-sizes. Equation (10) together with Boumal (2023,
Corollary 10.54) implies that for each i it holds

ℓ(v1, . . . ,Expvi(ui), . . . , vi) ≤ (11)

ℓ(V ) + ⟨gradi ℓ(V ), ui⟩+
Li

2
∥ui∥22.

Thus, in particular, if one sets ηi = 1/Li then each
coordinate-descent update yields a provable decrease in the
objective (Gutman and Ho-Nguyen 2023, Lemma 1). This
obviates the need for extensive tuning of learning rates ηi.



Model Temp.
AIME24 MATH500 OlympiadBench

SPREAD Sampling SPREAD Sampling SPREAD Sampling
C = 1 C = 10 C = 1 C = 10 C = 1 C = 10

Qwen2.5-1.5B

1.0 3.3 6.7 0.0 43.2 43.4 42.8 21.5 19.7 19.0
0.8 6.7 6.7 3.3 51.8 54.2 51.4 25.3 27.0 25.9
0.6 10.0 3.3 3.3 55.0 54.0 53.4 28.4 28.3 29.3
0.4 6.7 6.7 6.7 56.2 57.6 55.8 30.8 30.1 30.7
0.2 10.0 6.7 6.7 55.6 53.8 52.2 28.0 27.1 26.4

Qwen2.5-Math
-1.5B-Instruct

1.0 26.7 16.7 20.0 83.8 83.6 84.6 47.6 49.5 48.3
0.8 26.7 23.3 16.7 85.2 85.0 83.6 49.9 49.2 51.0
0.6 26.7 26.7 20.0 85.4 84.4 84.6 50.4 51.0 50.8
0.4 23.3 23.3 23.3 84.6 84.2 84.0 51.7 48.8 51.0
0.2 20.0 26.7 16.7 82.4 84.4 84.4 52.3 51.1 49.9

Table 1: Pass@N ↑ (in %) performance comparison across model variants and sampling temperature on three mathematical
reasoning benchmarks. Bold indicates the best method in each dataset.

5 Numerical Experiment
We evaluate SPREAD across three established mathematical
reasoning benchmarks: AIME24 (30 problems), MATH500
(500 problems), and OlympiadBench (675 problems). We
evaluate using the following metrics:
• Pass@N : The proportion of problems for which at least

one of the N generated solutions produces the correct
final answer.

• Solution Diversity: The float score indicating the overall
diversity among N solution

• Unique Solution Count: The number of distinct solution
approaches among N solutions.

For the latter two metrics, we employ a language-model-
as-a-judge paradigm using GPT-4.1-mini. We prompt the
model with the question and N generated solutions, request-
ing a diversity score (float in [0, 1]) and a count of unique
approaches (integer). The specific prompts and parameters
for this evaluation are detailed in the Appendix. Our ex-
periments utilize two model variants: Qwen2.5-1.5B (base)
and Qwen2.5-Math-1.5B-Instruct (math-specialized). Steer-
ing vectors are applied at layer 28, which corresponds to
the final layer in both architectures. The hidden activations
have dimension p = 1536. The magnitude αi is chosen
as αi = C∥hi∥2/p, where C ∈ {1, 10} is a scaling con-
stant. Steering vectors are computed using Algorithm 1 at
token positions τ ∈ {100, 600, 1100, 1600} with K = 20,
and the learning rates are calibrated using the input ac-
tivations following Theorem 6. All experiments are con-
ducted on NVIDIA RTX A5000 24GB hardware using tem-
perature sampling for solution generation with temperature
∈ {0.2, 0.4, 0.6, 0.8, 1.0} and a maximum generation length
of 2048 tokens. To ensure reproducibility, we fix the random
seed to 42 for all experimental runs. Additional numerical
results are presented in the appendix.

5.1 Experiment Results
Table 1 summarizes the performance of SPREAD com-
pared to temperature sampling across various benchmarks
and temperature settings. SPREAD with either C = 1 or
C = 10 consistently performs at least as well as vanilla

temperature sampling, and often achieves improvements of
several percentage points. Overall, SPREAD decoding (es-
pecially with C = 1) offers the strongest results under most
conditions. Table 2 demonstrates that SPREAD consistently
outperforms temperature sampling in generating unique so-
lutions across multiple benchmarks. These results highlight
SPREAD’s robustness and effectiveness in promoting cor-
rect and diverse reasoning trajectories across various model
variants and datasets.

Figure 3: Comparison of SPREAD and sampling methods
on AIME24 dataset using Qwen2.5-1.5B model, showing
Pass@N and Unique Solution Count.

Figure 4: Comparison of SPREAD and sampling meth-
ods on AIME24 dataset using Qwen2.5-Math-1.5B-Instruct
model, showing Pass@N and Unique Solution Count.



Metric Model Temp.
AIME24 MATH500 OlympiadBench

SPREAD Sampling SPREAD Sampling SPREAD Sampling
C = 1 C = 10 C = 1 C = 10 C = 1 C = 10

U
ni

qu
e

So
lu

tio
n

C
ou

nt
↑

Qwen2.5
-1.5B

1.0 6.97 6.60 6.67 3.14 3.21 3.14 6.12 6.14 6.14
0.8 6.83 6.43 3.6 3.03 3.05 2.97 5.99 5.99 6.04
0.6 6.40 6.07 3.37 2.91 2.86 2.90 5.57 5.65 5.58
0.4 6.00 6.20 6.17 2.73 2.74 2.77 5.30 5.30 5.26
0.2 5.17 5.60 2.97 2.47 2.56 2.59 4.65 4.69 4.69

Qwen2.5
-Math
-1.5B

-Instruct

1.0 6.63 7.03 3.67 1.92 1.94 1.93 4.59 4.53 4.57
0.8 6.63 6.73 3.47 1.87 1.90 1.89 4.28 4.36 4.39
0.6 6.27 6.47 3.5 1.81 1.84 1.82 4.10 4.16 4.11
0.4 6.23 5.87 6.17 1.77 1.73 1.78 3.99 3.92 3.89
0.2 5.87 5.87 5.53 1.70 1.74 1.74 3.67 3.65 3.68

D
iv

er
si

ty
Sc

or
e
↑ Qwen2.5

-1.5B

1.0 0.37 0.33 0.40 0.40 0.39 0.39 0.38 0.40 0.39
0.8 0.51 0.45 0.37 0.42 0.44 0.41 0.46 0.46 0.46
0.6 0.52 0.46 0.39 0.41 0.40 0.40 0.46 0.46 0.46
0.4 0.41 0.47 0.42 0.36 0.36 0.36 0.42 0.43 0.42
0.2 0.31 0.34 0.33 0.29 0.29 0.28 0.33 0.35 0.35

Qwen2.5
-Math
-1.5B-
Instruct

1.0 0.64 0.65 0.63 0.25 0.25 0.25 0.39 0.39 0.38
0.8 0.60 0.62 0.57 0.23 0.23 0.23 0.36 0.38 0.37
0.6 0.57 0.55 0.55 0.21 0.22 0.20 0.34 0.34 0.34
0.4 0.51 0.51 0.51 0.19 0.18 0.18 0.31 0.30 0.31
0.2 0.46 0.52 0.41 0.15 0.16 0.15 0.26 0.26 0.26

Table 2: Unique Solution Count ↑ and Diversity Score ↑ comparison across model variants and sampling temperature on three
mathematical reasoning benchmarks. Bold indicates the best method in each dataset.

To strengthen the comparison, we aggregate the met-
rics and analyze the accuracy-diversity frontiers in Figure
3 and 4 for the AIME24 dataset. We can observe that the
performance of SPREAD (red circles) dominates that of
vanilla sampling methods with different temperatures (blue
squares). The Pareto plots for the MATH and Olympiad-
Bench datasets are presented in the appendix.

5.2 Computational Efficiency
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Figure 5: Average running time of Algorithm 1 with vary-
ing problem dimension p and number of steering vectors N .
Lower execution time is better.

We analyze the execution time of Algorithm 1 for differ-
ent hidden vector dimensions p and different numbers of se-
quences N . We generate synthetic activations with p vary-
ing from 1536 up to 214 = 16384, which corresponds to

the hidden size of large-scale models such as LLaMA-3.1-
405B. Figure 5 reports the average solution time of Algo-
rithm 1 with K = 20 over 30 independent runs. The ex-
ecution time for N = 32 remains under 1.8 seconds even
for the largest dimension 16384, showing that our SPREAD
method remains highly efficient. These results demonstrate
the scalability and practical efficiency of our algorithm for
inference-time language model intervention.

6 Conclusions

We introduced SPREAD, a novel unsupervised activation
steering framework at test time designed to improve the
reasoning diversity of language models. By addressing the
well-known challenge of low output variance in best-of-
N sampling, SPREAD intervenes meaningful diversity into
generation trajectories. Our key innovation lies in refor-
mulating the activation steering problem as a Rieman-
nian optimization over the product of spheres, maximiz-
ing the log-determinant volume spanned by intervened rep-
resentations. This principled formulation enables us to ef-
ficiently compute diverse steering directions using Rie-
mannian block-coordinate descent. Empirical evaluations
on mathematical reasoning benchmarks such as AIME24,
MATH, and OlympiadBench validate the effectiveness of
our approach, as SPREAD significantly improves both the
diversity and accuracy of generated solutions, outperform-
ing temperature-sampling techniques. These results demon-
strate the potential of geometric test-time intervention meth-
ods to enhance reasoning in language models.
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This is the appendix for the paper “Test-time Diverse Reasoning by Riemannian Activation Steering”. Appendix A collects
the proofs of all theoretical results in the main paper. Appendix B provides further details about the experimental settings and
additional results.

A Proofs of Main Results
This section contains the proofs of all technical results presented in the main paper. For a matrix A ∈ Rp×N , ∥A∥2 denotes its
spectral norm, i.e., the square root of the largest eigenvalue of the matrix A⊤A.

Proof of Proposition 2. The volume of the parallelepiped is computed from the determinant of the Gram matrix :

Volume(P({hi + vi}i∈I))
2 = det((H + V )⊤I (H + V )I)

where (H+V )I is the submatrix of (H+V ) restricted to the columns indexed by I (Pyle 1962). By Kulesza and Taskar (2012,
theorem 2.1), we find ∑

I⊆2[N]

det((H + V )⊤I (H + V )I) = det(I + (H + V )⊤(H + V ))

Consequently, problem (1) is equivalent to

max
∀i:∥vi∥2

2≤αi

det[I + (H + V )⊤(H + V )]. (12)

Since the logarithm function is a monotonically increasing function, we obtain the desired result.

Proof of Proposition 4. Introducing dual variables λi ≥ 0 for each of the N constraints of problem (2), then the Lagrangian
function for problem (2) is

L(V, λ) = ℓ(V ) +
∑
i

λi(∥vi∥22 − αi).

For each i = 1, . . . , N , we define the constraint function ci(V ) = ∥vi∥2 − αi. We have the gradient

∇ici(V ) = (0, . . . , 0, 2vi︸︷︷︸
i−th block

, 0, . . . , 0). (13)

Let V ⋆ = [v⋆1 , . . . , v
⋆
N ] be an optimal solution of problem (2). Consider the active set at V ⋆

A = {i : ci(V ⋆) = αi} = {i : ∥vi∥2 = αi}.

Since αi > 0, from (13) we know that {∇ci(V ⋆), i ∈ A} are linearly independent. Thus, the KKT point (V ⋆, λ⋆) of problem (2)
satisfies

∇iL(V ⋆, λ⋆) = 0 ∀i (14a)

∥v⋆i ∥22 − αi ≤ 0, λ⋆
i ≥ 0 ∀i (14b)

λ⋆
i (∥v⋆i ∥22 − αi) = 0 ∀i. (14c)

The gradient of ℓ(V ) with respect to each vector vi is computed as

∇iℓ(V ) =
dℓ

dV
ei = −2(H + V )[I + (H + V )⊤(H + V )]−1ei.

Thus, the gradient of the Lagrangian with respect to each vector vi is

∇iL(V ⋆, λ⋆) = −2PQei − 2λ⋆
i vi,

where P = H + V ⋆ and Q = (I + P⊤P )−1.
In the following, we prove that any KKT point should satisfy λ⋆ > 0, and hence by (14c), it implies that ∥v⋆i ∥22 − αi = 0 for

all i. To this end, suppose without any loss of generality that λ⋆
1 = 0. Then the stationary condition (14a) gives

PQe1 = 0,

which means that
Pq1 = 0, (15)

where q1 is the first column of Q. From the definition of the inverse matrix, it holds that

(I + P⊤P )Q = I.



Equating the first column of both sides gives
(I + P⊤P )q1 = e1. (16)

Equation (15) implies that P⊤Pq1 = 0, thus, we have q1 = e1. Consequentially, equation (15) implies that Pe1 = 0, which
means that the first column of P = H+V ⋆ is 0, that is, h1+v⋆1 = 0. Now we construct a new matrix Ṽ as Ṽ = [ṽ, v⋆2 , . . . , v

⋆
N ],

where ṽ is any vector with norm
√
α1 but not equal to−h1. One can see that Ṽ is feasible for problem (2). Using the Sylvester’s

determinant identity det(I +AB) = det(I +BA), we have

ℓ(Ṽ ) = − log det[I + (H + Ṽ )⊤(H + Ṽ )]

= − log det[I + (H + Ṽ )(H + Ṽ )⊤]

= − log det[I +

N∑
i=2

(hi + v⋆i )(hi + v⋆i )
⊤ + (h1 + ṽ)(h1 + ṽ)⊤]

= − log det[I + PP⊤ + (h1 + ṽ)(h1 + ṽ)⊤] (h1 + v⋆1 = 0)

= − log det(I + PP⊤)− log det[I + (I + PP⊤)−1(h1 + ṽ)(h1 + ṽ)⊤]

= ℓ(V ⋆)− log[1 + (h1 + ṽ)⊤(I + PP⊤)−1(h1 + ṽ)].

Since I + PP⊤ is positive definite and ṽ ̸= −h1, we have (h1 + ṽ)⊤(I + PP⊤)−1(h1 + ṽ) > 0, which implies that

ℓ(Ṽ ) = ℓ(V ⋆)− log[1 + (h1 + ṽ)⊤(I + PP⊤)−1(h1 + ṽ)] < ℓ(V ⋆).

Hence, we get a contradiction about the primal-dual optimality of (V ⋆, λ⋆). Thus we can conclude that λ⋆
i > 0 for all i =

1, . . . , N . Combined with condition (14c), it holds that ∥v⋆i ∥2 = αi for all i. The proof is completed.

Proof of Lemma 5. The Euclidean gradient of ℓ is given by (Petersen, Pedersen et al. 2008)

∇ℓ(V ) = −2(H + V )M−1 ∈ Rp×N , (17)

where M = I +(H +V )⊤(H +V ) ∈ RN×N . For a column vector vi, the gradient of ℓ in this vector is the k-th column of the
matrix −2(H + V )M−1, i.e.,

gi ≜ ∇iℓ(V ) = −2((H + V )M−1)i ∈ Rp. (18)
The tangent space of the scaled sphereMi is given by

TviMi = {z ∈ Rp : z⊤vi = 0},
whose orthogonal projection is

ProjTvi
Mi

(u) = (I − 1

αi
viv

⊤
i )u, u ∈ Rp.

Therefore, the Riemannian gradient of ℓ at any point vi ∈Mi is given by

gradiℓ(V ) = ProjTvi
Mi

(gi) = gi −
1

αi
g⊤i vivi ∈ Rp. (19)

SinceM is a product manifold, according to Boumal (2023, Exercise 3.67), the Riemannian gradient of ℓ at any point V ∈M
is

gradℓ(V ) = [grad1ℓ(V ), . . . , gradNℓ(V )].

This completes the proof.

The proof of Proposition 8 relies on the following Lemma 10 and Proposition 11.

Lemma 10 (Upper bound of Hessian). Let ᾱ ≜
∑N

i=1 αi. For any V ∈M, it holds that

sup
∥U∥F=1

∥∇2ℓ(V )[U ]∥F ≤ 2 + 4
(
∥H∥F +

√
ᾱ
)2

.

Proof of Lemma 10. For any V ∈ M and U ∈ Rp×N with ∥U∥F = 1, the Hessian of ℓ at V evaluated in the direction U
is (Petersen, Pedersen et al. 2008)

∇2ℓ(V )[U ] = −2UM−1 + 2(H + V )M−1(U⊤(H + V ) + (H + V )⊤U)M−1,

where M = I + (H + V )⊤(H + V ). Thus we have

∥∇2ℓ(V )[U ]∥F ≤ 2∥UM−1∥F + 2∥(H + V )M−1(U⊤(H + V ) + (H + V )⊤U)M−1∥F . (20)



Since M = I + (H + V )⊤(H + V ) and (H + V )⊤(H + V ) is always positive semidefinite, the smallest eigenvalue of M
must be equal or greater than 1. Thus, the largest eigenvalue of M−1 must be no greater than 1, which means ∥M−1∥2 ≤ 1.
Then, we have

∥UM−1∥F ≤ ∥U∥F ∥M−1∥2 ≤ ∥U∥F = 1. (21)

For the term ∥(H + V )M−1(U⊤(H + V ) + (H + V )⊤U)M−1∥F , it holds that

∥(H + V )M−1(U⊤(H + V ) + (H + V )⊤U)M−1∥F
≤∥H + V ∥F ∥M−1∥2∥U⊤(H + V ) + (H + V )⊤U∥2∥M−1∥2
≤∥H + V ∥F ∥U⊤(H + V ) + (H + V )⊤U∥2
≤∥H + V ∥F

(
∥U⊤(H + V )∥2 + ∥(H + V )⊤U∥2

)
≤∥H + V ∥F × 2∥U∥2∥H + V ∥2
≤2∥H + V ∥2F (∥ · ∥2 ≤ ∥ · ∥F ). (22)

Defining ᾱ =
∑

i αi, according to the triangle inequality, we have

∥H + V ∥F ≤ ∥H∥F + ∥V ∥F = ∥H∥F +
√
ᾱ,

which, together with (22), implies that

∥(H + V )M−1(U⊤(H + V ) + (H + V )⊤U)M−1∥F ≤ 2(∥H∥F +
√
ᾱ)2. (23)

Combining (20), (21) and (23), we have

∥∇2ℓ(V )[U ]∥F ≤ 2 + 4(∥H∥F +
√
ᾱ)2,

which holds for all U ∈ Rp×N with ∥U∥F = 1. This completes the proof.

Proposition 11 (Formula for Hess ℓ(V )). For all V ∈M and U ∈ TVM, it holds that

Hess ℓ(V )[U ] = ProjTV M(∇2ℓ(V )[U ]) + UΛ, (24)

where Λ ∈ RN×N is a diagonal matrix with entries Λii = − 1
αi
g⊤i vi.

Proof of Proposition 11. Boumal (2023, Corollary 5.16) shows that

Hess ℓ(V )[U ] = ProjTV M(DY (V )[U ]), (25)

where Y is any smooth extension of gradℓ and we can pick Y (V ) = gradℓ(V ). Here DY (V ) is a linear map defined as

DY (V )[U ] = lim
t→0

Y (V + U)− Y (Y )

t
.

SinceM is a product manifold, we can compute ProjTV M block-wise, that is,

Hess ℓ(V )[U ] = ProjTV M(DY (V )[U ]) = [ProjTv1
M1

((DY (V )[U ])1), . . . ,ProjTvN
MN

((DY (V )[U ])N )], (26)

where (DY (V )[U ])i is the i-th block of DY (V )[U ]. Noting that Y (V ) = grad ℓ(V ) = [grad1 ℓ(V ), . . . , gradN ℓ(V )], it holds
that

(DY (V )[U ])i = Dgradi ℓ(V )[U ]

= D(gi −
1

αi
g⊤i vivi)(V )[U ]

= Dgi(V )[U ]− 1

αi
D(g⊤i vivi)(V )[U ], (27)

where gi is defined in (18) and here we take it as a function of V . By definition one can see that

Dvi(V )[ui] = ui. (28)

Noting that gi(V ) = ∇iℓ(V ) is the Euclidean gradient of ℓ in the i-th block, we have

[Dg1(V )[U ], . . . ,DgN (V )[U ]] = D[g1, . . . , gN ](V )[U ] = D∇ℓ(V )[U ] = ∇2ℓ(V )[U ],



which implies that Dgi(V )[U ] is the i-th block of∇2ℓ(V )[U ], i.e.,

Dgi(V )[U ] = (∇2ℓ(V )[U ])i. (29)

Also we have

D(g⊤i vivi)(V )[U ] = D(g⊤i vi)(V )[U ] · vi + g⊤i vi ·D(vi)(V )[U ]

=
[
D(g⊤i )(V )[U ]vi + g⊤i D(vi)(V )[U ]

]
· vi + g⊤i vi ·D(vi)(V )[U ]

=
[
(∇2ℓ(V )[U ])⊤i vi + g⊤i ui

]
vi + g⊤i viui. (30)

Substituting (28), (29) and (30) into (27) gives us

(DY (V )[U ])i = Dgi(V )[U ]− 1

αi
D(g⊤i vivi)(V )[U ]

= (∇2ℓ(V )[U ])i −
1

αi

[
(∇2ℓ(V )[U ])⊤i vi + g⊤i ui

]
vi −

1

αi
g⊤i viui. (31)

Since 1
αi

[
(∇2ℓ(V )[U ])⊤i vi + g⊤i ui

]
vi is a vector along vi, its projection into TviMi is 0. Since 1

αi
g⊤i viui is a vector along

ui ∈ TviMi, its projection into TviMi is itself. Hence from (31) we have

ProjTvi
Mi

((DY (V )[U ])i) = ProjTvi
Mi

((∇2ℓ(V )[U ])i)−
1

αi
g⊤i viui, (32)

which together with (26) implies that

Hess ℓ(V )[U ] = [ProjTv1
M1

((DY (V )[U ])1), . . . ,ProjTvN
MN

((DY (V )[U ])N )]

= [ProjTv1
M1

((∇2ℓ(V )[U ])1)−
1

α1
g⊤1 v1u1, . . . ,ProjTvN

MN
((∇2ℓ(V )[U ])N )− 1

αN
g⊤NvNuN ]

= [ProjTv1
M1

((∇2ℓ(V )[U ])1), . . . ,ProjTvN
MN

((∇2ℓ(V )[U ])N )] + UΛ

= ProjTV M(∇2ℓ(V )[U ]) + UΛ,

where Λ ∈ RN×N is a diagonal matrix with entries Λii = − 1
αi
g⊤i vi.

Now we are ready to prove Proposition 8.

Proof of Proposition 8. For any U ∈ TVM with ∥U∥F = 1, Proposition 11 gives the Riemannian Hessian of ℓ(V ) as

Hess ℓ(V )[U ] = ProjTV M(∇2ℓ(V )[U ]) + UΛ, (33)

where Λ ∈ RN×N is a diagonal matrix with entries Λii = − 1
αi
g⊤i vi. Since ProjTV M is a projection and together with

Lemma 10 we have
∥ProjTV M(∇2ℓ(V )[U ])∥F ≤ ∥∇2ℓ(V )[U ]∥F ≤ 2 + 4

(
∥H∥F +

√
ᾱ
)2

. (34)

For the term UΛ we have

∥UΛ∥2F =

N∑
i=1

∥ 1
αi

g⊤i viui∥22

=

N∑
i=1

1

α2
i

(g⊤i vi)
2∥ui∥22

≤
N∑
i=1

1

α2
i

∥gi∥22∥vi∥22∥ui∥22

=

N∑
i=1

1

αi
∥gi∥22∥ui∥22 (∥vi∥22 = αi)

≤ 1

αmin
∥∇ℓ(V )∥2F

N∑
i=1

∥ui∥22 (∥gi∥22 ≤ ∥∇ℓ(V )∥2F )

=
1

αmin
∥∇ℓ(V )∥2F , (

N∑
i=1

∥ui∥22 = ∥U∥2F = 1)



where αmin = mini αi > 0. Now, we bound ∥∇ℓ(V )∥F as

∥∇ℓ(V )∥F = ∥ − 2(H + V )M−1∥F ≤ 2∥H + V ∥F ∥M−1∥2 ≤ 2(∥H∥F +
√
ᾱ), (35)

which gives that

∥UΛ∥F ≤
1

√
αmin

∥∇ℓ(V )∥F ≤
2

√
αmin

(∥H∥F +
√
ᾱ). (36)

Equations (33), (34) and (36) together implies that for any U ∈ TVM with ∥U∥F = 1, we have

∥Hess ℓ(V )[U ]∥F ≤ ∥ProjTV M(∇2ℓ(V )[U ])∥F + ∥UΛ∥F ≤ 2 + 4
(
∥H∥F +

√
ᾱ
)2

+
2

√
αmin

(∥H∥F +
√
ᾱ). (37)

According to Boumal (2023, Corollary 10.47), Equation (37) implies that ℓ(V ) is L-smooth with the postulated constant. This
completes the proof.

Proof of Proposition 9. The proof is similar to the proof of Proposition 8, and here we focus on the Riemannian Hessian of ℓ
about the component vi instead of V . The Riemannian Hessian of ℓ(V ) with respect to vi is computes as

Hessi ℓ(V )[ui] = ProjTvi
Mi

(∇2
i ℓ(V )[ui])−

1

αi
g⊤i viui,

which implies that

∥Hessi ℓ(V )[ui]∥2 ≤ ∥ProjTvi
Mi

(∇2
i ℓ(V )[ui])∥2 + ∥

1

αi
g⊤i viui∥2 ≤ ∥∇2

i ℓ(V )[ui]∥2 + ∥
1

αi
g⊤i viui∥2.

Following the similar arguments in the proof of Lemma 10, we have

sup
∥ui∥2=1

∥∇2
i ℓ(V )[ui]∥2 ≤ 2 + 4(∥H∥F + ᾱ)2. (38)

Following the similar arguments in the proof of Proposition 8, for any ui ∈ TviMi with ∥ui∥2 = 1 we have

∥ 1
αi

g⊤i viui∥2 ≤
1

αi
∥gi∥2∥vi∥2∥ui∥2

≤ 1
√
αi
∥gi∥2 (since ∥vi∥ =

√
αi, ∥ui∥2 = 1)

≤ 1
√
αi
∥∇ℓ(V )∥F

≤ 2
√
αi

(∥H∥F +
√
ᾱ),

where the last inequality comes from (35). Thus, for any ui ∈ TviMi with ∥ui∥2 = 1 it holds that

∥Hessi ℓ(V )[ui]∥2 ≤ ∥∇2
i ℓ(V )[ui]∥2 + ∥

1

αi
g⊤i viui∥2

≤ 2 + 4(∥H∥F +
√
ᾱ)2 +

2
√
αi

(∥H∥F +
√
ᾱ) = Li.

Combine the above bound with Boumal (2023, Proposition 10.47) completes the proof.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Gutman and Ho-Nguyen (2023, Example 3) shows that the selection rule of block in Algorithm 1 satisfies
the (1,∞)-norm condition. Proposition 8 and Proposition 9 show that our objective function ℓ is both L-smooth and block-
wise smooth. Equation (11) further demonstrates that the iterates of Algorithm 1 satisfies Gutman and Ho-Nguyen (2023,
Assumption 1). Then the convergence of Algorithm 1 is a direct consequence of Gutman and Ho-Nguyen (2023, Theorem 3).



B Experimental Details
B.1 Experiment Settings
Here, we rigorously introduce where the activation steering is applied in transformer-based LMs. Transformer architec-
tures (Vaswani et al. 2017) have become the foundation of modern LMs, achieving remarkable performance across diverse
natural language processing tasks. We consider an LM with M heads per layer, exhibiting the following per-block information
flow for the layer l:

x(l+1) = FFN(MHA(x(l))) = FFN
( M⊕

j=1

W o
j

(
Attnj(x

(l))
))

,

where x(l) is the input of the specific layer l, with W o
j denoting the output projection matrix and Attnj denoting the single-

head attention transformation for each head j = 1, . . . ,M . Here, FFN, MHA denote the feed-forward and multi-head attention,
respectively. The direct sum operator

⊕
concatenates the outputs from all attention heads before applying the feed-forward

transformation. Contemporary steering methodologies operate by introducing additive perturbations to the residual stream
activations, as demonstrated in prior works (Turner et al. 2024; Ackerman 2024).

x̃(l+1) = x(l+1) + v(l+1), (39)

where v(l+1) is the steering vector. The computation of these steering vectors follows the procedure outlined in Algorithm 1.

B.2 Detail Evaluation for Language-Model-as-a-Judge
We provide below the prompts to evaluate the Diversity Score and the Unique Solution Count using OpenAI GPT4.1-mini.

Diversity Score prompt

1 You are given a math reasoning problem and a list of different responses (solutions)
generated by a model.

2 Your task is to assign a float score from 0 to 1.0 that reflects the **diversity of
reasoning and approaches** among the responses.

3 Consider differences in:
4 - Mathematical strategies
5 - Solution steps
6 - Structural approach
7 - Logical of reasoning
8
9 ### Problem:

10 {problem}
11
12 ### Responses:
13 {responses}
14
15 ### Instruction:
16 Output **only** a float number between 0 and 1.0 (inclusive), rounded to two decimal

places.
17 Do **not** include any explanation, symbols, or text - only the score.
18
19 Example output: ‘0.75’

Unique Solution Count prompt

1 You are given a math reasoning problem and a list of responses generated by a model.
2
3 Your task is to count how many **unique** responses there are.
4
5 Two responses are considered different if they use different:
6 - Mathematical strategies
7 - Solution steps
8 - Logical approach
9 - Structure of reasoning

10
11 ### Problem:
12 {problem}
13
14 ### Responses:



15 {responses}
16
17 ### Instruction:
18 Output **only** the number of unique responses as an integer.
19 Do **not** include any explanation, text, or symbols - just the number.
20
21 Example output: ‘3’

Temperature setting for evaluation. All evaluations using the language-model-as-a-judge were performed with GPT-4.1 mini
at temperature = 0.0, ensuring deterministic and consistent scoring across all prompts.

B.3 Detailed Results with Variance: Unique Solution Count and Diversity Score
Table 3 reports the mean and standard deviation of Unique Solution Count and Diversity Score across benchmarks and sampling
temperatures. The results demonstrate that our framework can generate more unique solutions and yield superior diversity scores
across most of the experimental conditions.



M
et

ri
c

Model T
AIME24 MATH500 OlympiadBench

SPREAD Sampling SPREAD Sampling SPREAD Sampling
C = 1 C = 10 C = 1 C = 10 C = 1 C = 10

U
ni

qu
e

So
lu

tio
n

C
ou

nt
↑

Q
w

en
2.

5-
1.

5B 1.0 6.97
(± 0.91)

6.60
(± 1.02)

6.67
(± 0.99)

3.14
(± 0.74)

3.21
(± 0.68)

3.14
(± 0.69)

6.12
(± 1.24)

6.14
(± 1.23)

6.14
(± 1.61)

0.8 6.83
(± 1.00)

6.43
(± 1.20)

3.60
(± 0.39)

3.03
(± 0.72)

3.05
(± 0.70)

2.97
(± 0.75)

5.99
(± 1.22)

5.99
(± 1.36)

6.04
(± 1.53)

0.6 6.40
(± 1.11)

6.07
(± 1.15)

3.37
(± 0.37)

2.91
(± 0.74)

2.86
(± 0.78)

2.90
(± 0.77)

5.57
(± 1.33)

5.65
(± 1.26)

5.58
(± 1.67)

0.4 6.00
(± 1.10)

6.20
(± 1.05)

6.17
(± 0.90)

2.73
(± 0.81)

2.74
(± 0.80)

2.77
(± 0.79)

5.30
(± 1.36)

5.30
(± 1.40)

5.26
(± 1.99)

0.2 5.17
(± 1.19)

5.60
(± 1.11)

2.97
(± 0.65)

2.47
(± 0.78)

2.56
(± 0.82)

2.59
(± 0.83)

4.65
(± 1.48)

4.69
(± 1.47)

4.69
(± 2.21)

Q
w

en
2.

5-
M

at
h

1.
5B

-I
ns

tr
uc

t 1.0 6.63
(± 0.86)

7.03
(± 1.07)

3.67
(± 0.60)

1.92
(± 1.07)

1.94
(± 1.10)

1.93
(± 1.06)

4.59
(± 2.34)

4.53
(± 2.35)

4.57
(± 2.34)

0.8 6.63
(± 1.04)

6.73
(± 1.50)

3.47
(± 0.67)

1.87
(± 1.05)

1.90
(± 1.07)

1.89
(± 1.10)

4.28
(± 2.31)

4.36
(± 2.32)

4.39
(± 2.31)

0.6 6.27
(± 1.28)

6.47
(± 1.37)

3.50
(± 0.62)

1.81
(± 1.01)

1.84
(± 1.02)

1.82
(± 1.00)

4.10
(± 2.24)

4.16
(± 2.26)

4.11
(± 2.24)

0.4 6.23
(± 1.24)

5.87
(± 1.13)

6.17
(± 1.57)

1.77
(± 0.95)

1.73
(± 0.93)

1.78
(± 0.98)

3.99
(± 2.19)

3.92
(± 2.19)

3.89
(± 2.14)

0.2 5.87
(± 1.45)

5.87
(± 1.28)

5.53
(± 1.78)

1.70
(± 0.89)

1.74
(± 0.92)

1.74
(± 0.93)

3.67
(± 2.04)

3.65
(± 2.04)

3.68
(± 2.06)

D
iv

er
si

ty
Sc

or
e
↑

Q
w

en
2.

5-
1.

5B 1.0 0.37
(± 0.08)

0.33
(± 0.06)

0.40
(± 0.09)

0.40
(± 0.05)

0.39
(± 0.05)

0.39
(± 0.05)

0.38
(± 0.06)

0.40
(± 0.06)

0.39
(± 0.06)

0.8 0.51
(± 0.09)

0.45
(± 0.08)

0.37
(± 0.05)

0.42
(± 0.05)

0.44
(± 0.06)

0.41
(± 0.05)

0.46
(± 0.06)

0.46
(± 0.06)

0.46
(± 0.06)

0.6 0.52
(± 0.08)

0.46
(± 0.06)

0.39
(± 0.07)

0.41
(± 0.06)

0.40
(± 0.06)

0.40
(± 0.06)

0.46
(± 0.06)

0.46
(± 0.06)

0.46
(± 0.06)

0.4 0.41
(± 0.05)

0.47
(± 0.08)

0.42
(± 0.05)

0.36
(± 0.05)

0.36
(± 0.06)

0.36
(± 0.06)

0.42
(± 0.05)

0.43
(± 0.05)

0.42
(± 0.05)

0.2 0.31
(± 0.02)

0.34
(± 0.02)

0.33
(± 0.05)

0.29
(± 0.05)

0.29
(± 0.05)

0.28
(± 0.05)

0.33
(± 0.05)

0.35
(± 0.05)

0.35
(± 0.05)

Q
w

en
2.

5-
M

at
h

1.
5B

-I
ns

tr
uc

t 1.0 0.64
(± 0.04)

0.65
(± 0.05)

0.63
(± 0.05)

0.25
(± 0.06)

0.25
(± 0.06)

0.25
(± 0.06)

0.39
(± 0.08)

0.39
(± 0.08)

0.38
(± 0.08)

0.8 0.60
(± 0.06)

0.62
(± 0.06)

0.57
(± 0.05)

0.23
(± 0.05)

0.23
(± 0.05)

0.23
(± 0.06)

0.36
(± 0.08)

0.38
(± 0.08)

0.37
(± 0.08)

0.6 0.57
(± 0.05)

0.55
(± 0.06)

0.55
(± 0.05)

0.21
(± 0.05)

0.22
(± 0.05)

0.20
(± 0.05)

0.34
(± 0.07)

0.34
(± 0.08)

0.34
(± 0.07)

0.4 0.51
(± 0.05)

0.51
(± 0.07)

0.51
(± 0.06)

0.19
(± 0.04)

0.18
(± 0.04)

0.18
(± 0.04)

0.31
(± 0.07)

0.30
(± 0.07)

0.31
(± 0.07)

0.2 0.46
(± 0.06)

0.52
(± 0.08)

0.41
(± 0.07)

0.15
(± 0.04)

0.16
(± 0.04)

0.15
(± 0.04)

0.26
(± 0.05)

0.26
(± 0.06)

0.26
(± 0.05)

Table 3: Mean and variance value of Unique Solution Count ↑ and Diversity Score ↑ comparison across model variants and sam-
pling temperature (T) on three mathematical reasoning benchmarks, including AIME24 (AI-MO 2024), MATH500 (Lightman
et al. 2023) and OlympiadBench (He et al. 2024). Bold indicates the best method in each dataset.



B.4 Pass@N Across Steering Layers
We set the random seed to 42 for all experiments. We conduct experiments to study the effects of changing the steering layers
on the performance of SPREAD. For simplicity, we use the AIME24 dataset because it has only 30 samples. We screen the
steering layers from 1 to 28 using Qwen2.5-Math-1.5B-Instruct. Figure 6 gives the results measured by Pass@8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Layer

0.175

0.200

0.225

0.250

0.275
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@
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Temp = 0.6
Temp = 0.8

Figure 6: Layer-wise comparison of Pass@N ↑ (in %) for Qwen2.5-Math-1.5B-Instruct across 28 layers and different temper-
atures on the AIME24 benchmark.



B.5 Hypothesis Testing
In Section 3, we postulate that a larger volume of the parallelepiped spanned by activations him will induce diversity in the
final answers. We now propose a statistical test to validate this hypothesis.

For each question qi, i = 1, . . . ,M , we simultaneously generate N = 16 output sequences. At each decoding step τ , we
extract the final hidden state vectors of those N paths and form the matrix Hτ

i = [hτ
i1, . . . , h

τ
iN ] and use Algorithm 1 to compute

steer vectors V τ
i = [vτi1, . . . , v

τ
iN ]. For each question qi, we we draw 10 subsamples without replacement of size Ñ = 8 from

N responses, yielding 10 sub-sampled paths per question. Let k ∈ {1, . . . , 10} index these.
For each sub-sampled path k of question qi, define the observed diversity

Uik = # the unique solutions among Ñ responses,

and the cumulative “volume” proxy

Zik =

τfinal∑
τ=1

log det[I + (Hτ
ik + V τ

ik)
⊤(Hτ

ik + V τ
ik)],

where Hτ
ik and V τ

ik are activations and steering vectors corresponding to sub-sampled path k of question qi.
Since Uik is a count between 1 and Ñ , we model Uik as a Binomial outcome with Ñ trials and success probability pik so

that
Uik ∼ Binomial(Ñ , pik),

where pik links with Zik with a logistic regression:

pik =
exp(β0,i + βZik)

1 + exp(β0,i + βZik)
=

1

1 + exp(−β0,i − βZik)
,

where β0,i ∈ R are question-specific intercepts and β ∈ R is the common slope parameter. We are interested in testing whether
the predictor Z is positively associated with the outcome U :

H0 : β ≤ 0 versus HA : β > 0.

We estimate {β0,i}Mi=1 and β by maximizing the binomial log-likelihood:

max
{β0,i}M

i=1,β

M∑
i=1

10∑
k=1

Uik(β0,i + βZik)− Ñ log
(
1 + eβ0,i+βZik

)
.

Inference is based on a Wald statistic with a cluster-robust (sandwich) variance estimator, clustering at the question level to
account for within-question dependence and heteroskedasticity:

zWald =
β̂

ŜE(β̂)
.

Applying this procedure yields β̂ = 0.88, clustered ŜE(β̂) = 0.24, so zWald = 3.6 and a one-sided p = 0.001. Thus, we
reject H0 at conventional levels. Substantively, a one-unit increase in Z multiplies the odds of a response being unique by
exp(β̂) ≈ 2.4, indicating a strong positive association between the proposed volume measure and answer diversity.


