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Abstract

Optimization over Stiefel manifolds has found wide applications in many scientific and engi-
neering domains. Despite considerable research effort, high-dimensional optimization problems
over Stiefel manifolds remain challenging, and the situation is exacerbated by nonsmooth objective
functions. The purpose of this paper is to propose and study a novel coordinate-type algorithm for
weakly convex (possibly nonsmooth) optimization problems over high-dimensional Stiefel mani-
folds, named randomized submanifold subgradient method (RSSM). Similar to coordinate-type
algorithms in the Euclidean setting, RSSM exhibits low per-iteration cost and is suitable for high-
dimensional problems. We prove that RSSM converges to the set of stationary points and attains
ε-stationary points with respect to a natural stationarity measure in O(ε−4) iterations in both
expectation and the almost-sure senses. To the best of our knowledge, these are the first conver-
gence guarantees for coordinate-type algorithms to optimize nonconvex nonsmooth functions over
Stiefel manifolds. An important technical tool in our convergence analysis is a new Riemannian
subgradient inequality for weakly convex function on proximally smooth matrix manifolds, which
could be of independent interest.

1 Introduction

In this paper, we consider the following constrained minimization problem:

min f(X)
s.t. X ∈ St(n, p),

(1)

where n ≥ p are positive integers, St(n, p) = {X ∈ Rn×p : X⊤X = Ip} is the Stiefel manifold, and
f : Rn×p → R is a function that is weakly convex on some convex neighborhood containing the Stiefel
manifold St(n, p) but possibly nonsmooth. Recall that a function f is said to be τ -weakly convex on
a convex set Ω ⊆ Rn×p if f(·)+ τ

2∥·∥
2 is convex on Ω. Problem (1) has attracted great attention from

both optimization and machine learning communities due to its broad range of applications, including
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the orthogonal Procrustes problem [GD04, SI13], the joint diagonalization problem [TCA09], Kohn-
Sham total energy minimization [LWW+15], robust subspace recovery [ZWR+18], and orthogonal
dictionary learning [LCD+21]. For more details on Stiefel manifolds and the associated optimization
problems, see [AMS09, HLWY20] and the references therein.

In modern applications, the dimension of the Stiefel manifold could be very high, i.e., n or p
is a large number. For example, as pointed out in [LJW+19], deep neural networks attain optimal
generalization error when the weight matrix has orthonormal columns. Constraining the columns of
the weight matrix to be orthonormal in the training of deep neural networks naturally constitutes a
high-dimensional instance of optimization over Stiefel manifolds. Unfortunately, despite considerable
research effort, existing algorithms for optimization over Stiefel manifolds do not scale well and are
only suitable for small- to medium-scale problems. When the problem is further complicated by a
nonsmooth objective function, the situation becomes even more challenging. The main goal of this
paper is to fill this gap in the literature and develop an efficient algorithm for nonsmooth optimization
over high-dimensional Stiefel manifolds.

In the Euclidean setting, coordinate-type algorithms are a classical approach to tackling high-
dimensional optimization problems and have shown promising performance in many applications [Nes12,
Wri15, STXY16]. A natural idea for achieving our goal is therefore extending coordinate-type algo-
rithms to Stiefel manifolds. This is not straightforward though. The development of coordinate-type
algorithms relies critically on the separability of the feasible region, which enables that the feasibil-
ity can be maintained via simple operations. Such a separability condition is valid in the case of
unconstrained or linearly constrained optimization problems. For Stiefel manifolds, the variables are
coupled all together in a complicated, nonlinear manner, rendering the extension highly nontrivial.

Extending coordinate-type algorithms to manifold optimization is not entirely new and has been
studied in a number of papers. When the manifold is a product manifold, coordinate-type algorithms
can naturally be developed due to the built-in separability of the constraint; see, e.g., [HML21b,
HML21a, TKRH21, PV23]. Without this product structure, the development of coordinate-type
algorithms for manifold optimization is limited. In [GHN22], a coordinate-type algorithm, called the
tangent subspace descent (TSD), for general manifolds has been developed, which deals with the
coupling issue by decomposing the tangent space into lower-dimensional subspaces and updating the
iterate along a chosen subspace at each iteration using the exponential map. Using a similar strategy
as in [GHN22] to deal with the coupling issue, the recent paper [DR23] developed a coordinate-type
algorithm for optimization over the manifold of positive definite matrices. Another strategy to tackle
the coupling issue is to penalize the manifold constraint to the objective, essentially transforming
the manifold optimization problem to an Euclidean optimization problem. Such an idea has been
adopted in [GLY19] to develop coordinate-type algorithms for optimization over Stiefel manifolds.
However, this leads to an infeasible algorithm, which might not be ideal in some applications. We
should also point out that all these works however consider only smooth objective functions.

Our contributions can be summarized as follows.

� We devise a new coordinate-type algorithm, called the randomized submanifold subgradient
method (RSSM), for solving nonsmooth weakly convex minimization over Stiefel manifolds. A
key novel aspect of RSSM lies in the way it deals with coupling issue: instead of performing
coordinate updates with respect to the intrinsic coordinates by decomposing the tangent space
as in [GHN22], RSSM performs coordinate updates with respect to the ambient Euclidean
coordinates by decomposing the Stiefel manifold into submanifold blocks and taking a retracted
partial Riemannian subgradient step restricted to a randomly chosen submanifold block.

� We show that the submanifold blocks are 1-proximally smooth and that the corresponding
projections can be computed efficiently by a closed-form formula. RSSM therefore exhibits a
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low per-iteration computational cost and hence is particularly suitable for high-dimensional
instances.

� We theoretically analyze the convergence behaviour of RSSM. Specifically, we prove that our
method converges to the set of stationary points and attains the iteration complexity O(ε−4)
with respect to a natural stationarity measure in both expectation and the almost-sure senses.

� An important theoretical construct in our analysis is a positive definite operator on Rn×p, called
the scaling operator. The scaling operator permeates the proofs via its associated metric.
Remarkably, it allows us to derive a new Riemannian subgradient inequality for a weakly
convex function on a proximally smooth manifold, which in turn plays a fundamental role in
our convergence results and could be of independent interest.

We end the introduction by presenting a detailed comparison on coordinate-type algorithms over
Stiefel manifolds, see Table 1.

Table 1: Coordinate-type methods in the Stiefel manifold setting.

References
& Methods

Coordinate
Objective
Function

Columns Feasible Retraction

[GHN22]
(TSD)

intrinsic C1 multiple "
exponential

map

[GLY19]
(PCAL)

ambient
C1 (C2 in some

theoretical results)
multiple % N/A

Our work
(RSSM)

ambient
weakly convex
and nonsmooth

multiple "
polar decomposition-
based retraction (9)

2 Notation and Preliminaries

For ξ, η ∈ Rn×p, we denote by ⟨ ξ, η ⟩ := tr(ξ⊤η) the Frobenius inner product and by ∥ξ∥ :=
√
⟨ξ, ξ⟩

its induced norm. The operator norm is denoted by ∥ξ∥op := supv∈Rp, ∥v∥=1 ∥ξv∥. The nuclear norm

is denoted by ∥ξ∥∗ := tr((ξ⊤ξ)1/2). Given a self-adjoint positive definite linear operator D : Rn×p →
Rn×p, ⟨ ξ, η ⟩D and ∥ξ∥D denote the Mahalanobis inner product and norm respectively, i.e., ⟨ξ, η⟩D =
⟨D(ξ), η⟩ and ∥ξ∥D := ⟨D(ξ), ξ⟩. The symbols I and 0 represent the identity and zero matrices
respectively. For a subset C ⊆ [p] := {1, . . . , p} and a matrix X ∈ Rn×p, XC ∈ Rn×|C| denotes the
submatrix obtained by extracting all columns of X corresponding to indices in C. For ℓ ≥ 2, we
let
(
[ℓ]
2

)
be the collection of 2-sets or unordered pairs in [ℓ], i.e.,

(
[ℓ]
2

)
:= { {i, j} : i, j ∈ [ℓ] and i ̸= j }.

The distance function from a closed subset S ⊆ Rn×p is dist(X,S) := infY ∈S ∥X − Y ∥.

2.1 Stiefel Manifolds as Proximally Smooth Sets

Definition 2.1. A closed set S ⊆ Rn×p is R-proximally smooth if the (nearest-point) projection
mapping PS(X) := argminY ∈S ∥X − Y ∥ is well-defined and single-valued whenever dist(X,S) < R.

The proximally smooth set is an important class of nonconvex sets with wide applications. It
has been proved in [BT22, Proposition 1] that the Stiefel manifold St(n, p) is 1-proximally smooth.
Indeed, all convex sets, sublevel sets of weakly convex functions, and compact C2 embedded submani-
folds are proximally smooth (see [CSW95]). Besides, following [ANT16, Theorem 2.2], a submanifold
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M is R-proximally smooth if and only if

⟨ ζ,X ′ −X ⟩ ≤ ∥ζ∥
2R

∥X ′ −X∥2 (2)

for all X,X ′ ∈ M and ζ ∈ NXM. Here, NXM denotes the normal space of M at X.

2.2 Euclidean Clarke Subdifferential and Clarke Regularity

Definition 2.2 (Generalized Directional Derivative and Euclidean Clarke Subdifferential). [Cla90,
§2.1] Let f be Lipschitz near X ∈ Rn×p, and let V ∈ Rn×p. The generalized directional derivative
of f at X in the direction V is defined as

f◦(X;V ) := lim sup
Y→X
t ↓ 0

f(Y + tV ) − f(Y )

t
, (3)

and the Euclidean Clarke subdifferential or generalized gradient of f at X is defined as

∂f(X) := { ζ ∈ Rn×p : ⟨ ζ, V ⟩ ≤ f◦(X;V ) for all V ∈ Rn×p }. (4)

Definition 2.3 (Clarke Regularity). Let f be Lipschitz near X ∈ Rn×p. We say f is Clarke regular
at X if, for every V ∈ Rn×p, the one-sided directional derivative

f ′(X;V ) := lim
t ↓ 0

f(X + tV ) − f(X)

t
(5)

exists and is equal to f◦(X;V ). Moreover, f is Clarke regular if f is Clarke regular at every X.

2.3 Weakly Convex Optimization on Stiefel Manifolds

Given a τ -weakly convex function h, which must be Clarke regular [Via83, Proposition 4.5], its
(Clarke) subdifferential at X ∈ Rn×p can be reduced to ∂h(X) := ∂g(X) − τX, where ∂g(X) is the
convex subdifferential of g at X ∈ Rn×p; see [Via83, Proposition 4.6]. Moreover, if h is τ -weakly
convex on Rn×p, we have

h(Y ) ≥ h(X) + ⟨ ∇̃h(X), Y −X ⟩ − τ

2
∥Y −X∥2 (6)

for all X,Y ∈ Rn×p and ∇̃h(X) ∈ ∂h(X); see [Via83, Proposition 4.8].
Let M be a smooth matrix manifold in Rn×p, and TXM be the tangent space at a point X ∈ M.

For a Clarke regular function (e.g., τ -weakly convex function) h in the ambient Euclidean space
Rn×p, the Riemannian (Clarke) subdifferential of h at X ∈ M can be given by

∂Mh(X) := PTXM(∂h(X)) := {PTXM(∇̃h(X)) : ∇̃h(X) ∈ ∂h(X) }, (7)

where PTXM(ξ) denotes the orthogonal projection of ξ onto TXM; see [YZS14, Theorem 5.1].

Given an Euclidean subgradient ∇̃h(X) ∈ ∂h(X) of h at X ∈ M, the corresponding Rieman-
nian subgradient is denoted by ∇̃Mh(X) := PTXM(∇̃h(X)). In particular, it is well known that
TXSt(n, p) = { ξ ∈ Rn×p : ξ⊤X + X⊤ξ = 0 } and

PTXSt(n,p)(ξ) := ξ −Xsym(X⊤ξ) = ξ − 1
2X(X⊤ξ + ξ⊤X); (8)

see [AMS09, Example 3.6.2].
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With (7), we call a point X ∈ M satisfying 0 ∈ ∂Mf(X) a stationary point of the weakly convex
function f over M.

To search for the next iterate along feasible curves at the current point X on an embedded
manifold M, the notion of local retraction was introduced in [AMS09, Definition 4.1.1], which is a
differentiable mapping from TXM onto M that locally approximates the exponential map on the
manifold M up to first order. Given ξ ∈ TXM, we denote RetrX(ξ) the local retraction at X ∈ M
along the direction ξ ∈ TXM. In what follows, we would focus on polar decomposition-based
retraction for the Stiefel manifold, i.e.,

RetrX(ξ) := (X + ξ)(I + ξ⊤ξ)−1/2 (9)

for X ∈ St(n, p) and ξ ∈ TXSt(n, p). We note that the polar decomposition-based retraction RetrX(ξ)
gives the unique projection of X + ξ onto St(n, p), i.e., RetrX(ξ) := PSt(n,p)(X + ξ). Moreover, this
projection PSt(n,p) satisfies a Lipschitz-like property

∥RetrX(ξ) − Y ∥ = ∥PSt(n,p)(X + ξ) − PSt(n,p)(Y ) ∥ ≤ ∥X + ξ − Y ∥ (10)

for all X,Y ∈ St(n, p) and ξ ∈ TXSt(n, p); see [LCD+21, Lemma 1]. From [LSW19, Appendix E.1],
ξ 7→ PSt(n,p)(X + ξ) also satisfies a second-order boundedness condition, i.e.,

∥PSt(n,p)(X + ξ) −X − ξ ∥ ≤ ∥ξ∥2 (11)

for all X ∈ St(n, p) and ξ ∈ TXSt(n, p) with ∥ξ∥ ≤ 1.
When M is a proximally smooth manifold, we can define a local retraction in a similar fashion.

Lemma 2.4. Let M be a proximally smooth manifold in Rn×p. Then, ξ 7→ PM(X + ξ) is a local
retraction from a neighborhood U of the origin of TXM onto M.

Proof. Let M be R-proximally smooth. Suppose that ξ ∈ Rn×p satisfies ∥ξ∥ < R. Then, we have
dist(X + ξ,M) ≤ ∥X + ξ −X ∥ = ∥ξ∥ < R, which implies PM is well-defined (i.e. single-valued).
By taking U ⊊ {ξ ∈ TXM : ∥ξ∥ < R}, we can write RX(ξ) := PM(X + ξ) from U ⊆ TXM to M. It
is easy to see that RX(0) = PM(X) = X and DRX(0)[ξ] := DPM(X)[ξ] = PTXM(ξ) = ξ by [LM08,
Lemma 4], so RX is a local retraction from U ⊆ TXM to M.

3 Randomized Submanifold Subgradient Method

In this section, we present RSSM in Algorithm 1 for solving problem (1), which extends the idea
of coordinate-type methods in the Euclidean setting to the Stiefel manifold setting. Our algorithm
updates the iterates via a partial Riemannian subgradient oracle and a low-cost retraction onto a
submanifold block, which will be defined appropriately in §3.1.

3.1 Submanifold Block

Definition 3.1 (Submanifold Block and Its Tangent Space). The submanifold block at X ∈ St(n, p)
with respect to C ⊆ [p] is defined as

MX[p]\C := {Y ∈ St(n, |C|) : X⊤
[p]\CY = 0 }, (12)

and the tangent space of the submanifold block at XC ∈ MX[p]\C is

TXC
MX[p]\C := { ξ ∈ TXC

St(n, |C|) : X⊤
[p]\Cξ = 0 }. (13)
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By employing the submanifold block concept, we only allow the columns of X corresponding to
indices in C to vary at one time, while keeping all other columns in [p] \C fixed, thereby preserving
the feasibility. In other words, we extend the idea of a coordinate block in the Euclidean space to a
submanifold block in the Stiefel manifold setting. It is easy to verify that Y ∈ MX[p]\C if and only if

Y I⊤C + X[p]\CI
⊤
[p]\C ∈ St(n, p). This means searching along a submanifold block via, e.g., a retracted

Riemannian subgradient step, preserves the feasibility. The tangent space (13) of the submanifold
block (12) in Definition 3.1 contains the search direction.

Lemma 3.2 (Proximal Smoothness of Submanifold Block and Its Projection). Let C ⊆ [p] and
X ∈ St(n, p). For Ξ ∈ Rn×|C| with dist(Ξ,MX[p]\C ) < 1, the projection is defined as

PMX[p]\C
(Ξ) := PSt(n,|C|)

((
I −X[p]\CX

⊤
[p]\C

)
Ξ
)

=
(
I −X[p]\CX

⊤
[p]\C

)
Ξ
[

Ξ⊤
(
I −X[p]\CX

⊤
[p]\C

)
Ξ
]−1/2

.

This shows MX[p]\C is 1-proximally smooth in Rn×|C|. If furthermore X⊤
[p]\CΞ = 0, then the projection

PMX[p]\C
(Ξ) = PSt(n,|C|)(Ξ).

Proof. Let Ξ ∈ Rn×|C| with dist(Ξ,MX[p]\C ) < 1. We can write Ξ = X[p]\CX
⊤
[p]\CΞ + (I −

X[p]\CX
⊤
[p]\C)Ξ and

∥Ξ − U∥2 =
∥∥∥X[p]\CX

⊤
[p]\CΞ + (I −X[p]\CX

⊤
[p]\C)Ξ − U

∥∥∥2
=
∥∥∥X[p]\CX

⊤
[p]\CΞ

∥∥∥2 +
∥∥∥(I −X[p]\CX

⊤
[p]\C)Ξ − U

∥∥∥2
for all U ∈ MX[p]\C . Since dist(Ξ,St(n, |C|)) ≤ dist(Ξ,MX[p]\C ) < 1 and St(n, |C|) is 1-proximally

smooth in Rn×|C|, we obtain

argmin
U∈St(n,|C|)

∥∥∥(I −X[p]\CX
⊤
[p]\C)Ξ − U

∥∥∥2
:= PSt(n,|C|)

(
(I −X[p]\CX

⊤
[p]\C)Ξ

)
= (I −X[p]\CX

⊤
[p]\C)Ξ

[
Ξ⊤(I −X[p]\CX

⊤
[p]\C)Ξ

]−1/2

∈ MX[p]\C ⊆ St(n, |C|),

where the second equality follows from PSt(n,|C|)(Ξ̃) := Ξ̃(Ξ̃⊤Ξ̃)−1/2 when dist(Ξ̃,St(n, |C|)) < 1 and

dist((I −X[p]\CX
⊤
[p]\C)Ξ, St(n, |C|)) ≤ dist((I −X[p]\CX

⊤
[p]\C)Ξ,MX[p]\C ) ≤ dist(Ξ,MX[p]\C ) < 1.

Therefore,

PMX[p]\C
(Ξ) := argmin

U∈MX[p]\C

∥Ξ − U∥2 = argmin
U∈MX[p]\C

∥∥∥(I −X[p]\CX
⊤
[p]\C)Ξ − U

∥∥∥2
= (I −X[p]\CX

⊤
[p]\C)Ξ

[
Ξ⊤(I −X[p]\CX

⊤
[p]\C)Ξ

]−1/2
.

Thus, MX[p]\C is 1-proximally smooth in Rn×|C|. Furthermore, if X⊤
[p]\CΞ = 0, then we have

PMX[p]\C
(Ξ) = PSt(n,|C|)(Ξ).
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3.2 Partial Riemannian Subgradient Oracle

Let f be a τ -weakly convex and L-Lipschitz continuous function on some convex neighborhood of
St(n, p) in Rn×p. Let X ∈ Rn×p be fixed. With respect to a subset C ⊆ [p], we can define a mapping
ΦC : Rn×|C| → Rn×p by ΦC(Y ) := Y I⊤C + X[p]\CI

⊤
[p]\C . Following §2.2 or [Cla90, §2.3], we can define

the partial Euclidean (Clarke) subdifferential of f with respect to C as

∂Cf(X) := ∂(f ◦ ΦC)(XC) ⊆ Rn×|C| (14)

for X ∈ Rn×p. A partial Euclidean (Clarke) subgradient of f with respect to C can be written as
∇̃Cf(X) := ∇̃(f ◦ ΦC)(XC) ∈ ∂Cf(X).

Proposition 3.3 (Relationship between Partial and Full Euclidean Subdifferentials). Let f be a
Clarke regular function on Rn×p, X ∈ Rn×p. Then, for every C ⊆ [p], it holds that ∂Cf(X) =
∂f(X)IC , i.e., for every ∇̃Cf(X) ∈ ∂Cf(X), there exists ∇̃f(X) ∈ ∂f(X) such that ∇̃Cf(X) =
∇̃f(X)IC .

Proof. By definition of (14), ∂Cf(X) = ∂(f ◦ΦC)(XC). Since ΦC is affine, the strict derivative of ΦC

at XC is DsΦC(XC)[V ] = V I⊤C for V ∈ Rn×|C|; see [Cla90, §2.2]. By subdifferential chain rule [Cla90,
Theorem 2.3.10] and since f is Clarke regular at X = ΦC(XC), we get ∂Cf(X) := ∂(f ◦ ΦC)(XC) =
DsΦC(XC)∗∂f(X) = ∂f(X)IC .

Let C := {C1, . . . , Cℓ } be a partition of [p] with ℓ ≥ 2, i.e., Ci ∩ Cj = ∅ and
⋃ℓ

i=1Ci = [p]. For
the sake of convenience, in what follows we denote pi := |Ci|, Xi := XCi , X−i := X[p]\Ci

for i ∈ [ℓ],

and Cij := Ci ∪ Cj , pij := |Cij |, Xij := XCij , X−ij := X[p]\Cij
for {i, j} ∈

(
[ℓ]
2

)
.

Given a point X ∈ St(n, p) and Cij ⊆ [p] for an unordered block index pair {i, j} ∈
(
[ℓ]
2

)
, we

can obtain a submanifold block MX−ij := {Y ∈ St(n, pij) : X⊤
−ijY = 0 } ⊆ St(n, pij). Following

§2.3, we can define the partial Riemannian (Clarke) subdifferential of f with respect to Cij as
∂ijf(X) := ∂MX−ij

(f ◦ΦCij )(Xij) for X ∈ St(n, p), which means that a partial Riemannian (Clarke)

subgradient of f with respect to Cij can be written as

∇̃ijf(X) := ∇̃MX−ij
(f ◦ ΦCij )(Xij) = PTXij

MX−ij

(
∇̃Cijf(X)

)
∈ ∂ijf(X), (15)

for some ∇̃Cijf(X) ∈ ∂Cijf(X), where PTXij
MX−ij

(ξ) := Xij skew(X⊤
ij ξ) + (I − XX⊤)ξ for all

ξ ∈ Rn×pij .
We summarize our RSSM in Algorithm 1. We start from an initial point X0 ∈ St(n, p) and a fixed

partition C of [p]. At each iteration k, our RSSM first randomly selects an unordered column block
index pair {i, j} ∈

(
[ℓ]
2

)
uniformly. We also choose a constant or diminishing stepsize γk ∈ (0, 1

L).

Next, we compute a partial Riemannian subgradient ∇̃ijf(Xk) (cf. (15)) of f with respect to Cij .
Then, we keep Xk+1

−ij := Xk
−ij and perform a retracted partial Riemannian subgradient step

Xk+1
ij := PM

Xk
−ij

(Xk
ij − γk∇̃ijf(Xk)) = PSt(n,pij)(X

k
ij − γk∇̃ijf(Xk)), (16)

in which the last equality can be guaranteed by Lemma 3.2. We repeat the same process until
convergence is achieved.

Proposition 3.3 guarantees that, given X ∈ St(n, p), we have ∂Cijf(X) = ∂f(X)Iij for each

{i, j} ∈
(
[ℓ]
2

)
. With this relationship, we can describe the following conditional independence assump-

tion on our partial subgradient oracle, which is required in the analysis of randomized subgradient
algorithms.

Assumption 3.4 (Conditional Independence). Conditional on the current random iterate Xk, the
full Euclidean subgradient ∇̃f(Xk) ∈ ∂f(Xk) and the column block index pair {i, j} ∈

(
[ℓ]
2

)
are

independent random variables.
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Algorithm 1 Randomized Submanifold Subgradient Method on Stiefel Manifolds

Input: A partition C := {C1, . . . , Cℓ } of [p] with ℓ ≥ 2, and X0 ∈ St(n, p).
Output: A random sequence {Xk} ⊆ St(n, p)

1: for k = 1, 2, . . . do
2: Pick {i, j} ∼ Uniform

(
[ℓ]
2

)
and a constant/diminishing stepsize γk ∈

(
0, 1

L

)
(cf. Theorem 4.9

and Theorem 4.11).
3: Compute a partial Riemannian subgradient (cf. (15)) by

∇̃ijf(Xk) := PT
Xk

ij
M

Xk
−ij

(
∇̃Cijf(Xk)

)
∈ TXk

ij
MXk

−ij
.

4: Perform the update (cf. (16))

Xk+1
ij := PM

Xk
−ij

(Xk
ij − γk∇̃ijf(Xk)) = PSt(n,pij)(X

k
ij − γk∇̃ijf(Xk)), Xk+1

−ij := Xk
−ij .

5: end for

3.3 Per-Iteration Complexity

The proposition below provides a reference of the per-iteration complexity of our RSSM in terms of
floating point operations when we choose a uniform partition of column block indices.

Proposition 3.5 (Per-iteration Complexity). Let C := {C1, . . . , Cℓ} be a partition of [p], and |Ci| ≤
⌈pℓ ⌉ for all i ∈ [ℓ]. If, furthermore, the partial Euclidean subgradient ∇̃Cijf(X) is given, then each

iteration requires O
(
np2

ℓ

)
floating point operations.

Proof. For a given ξij ∈ Rn×pij , we can implement step (15) for finding PTXij
MX−ij

(ξij) as follows:

1. Find Y = X⊤ξij ∈ Rp×pij , which involves O(nppij) floating point operations.

2. Update Y (Cij , :) ∈ Rpij×pij by sym(Y (Cij , :)), which involves O(p2ij) floating point operations.

3. Perform multiplication XY ∈ Rn×pij , which involves O(nppij) floating point operations.

4. Compute PTXij
MX−ij

(ξij) = ξij −XY ∈ Rn×pij , which involves npij floating point operations.

Hence, computing the partial Riemannian subgradient ∇̃ijf(X) from the given partial Euclidean

subgradient ∇̃Cijf(X) ∈ Rn×pij via step (15) requires O(nppij +npij +p2ij) = O(nppij) floating point
operations since pij < p. From [GVL13, §5.4.5], it is known that performing the polar decomposition
PSt(n,pij)(Ξ) for a given Ξ ∈ Rn×pij requires O(np2ij) floating point operations. This implies step (16)

requires O(npij + np2ij) = O(np2ij) floating point operations. In total, since pij ≤ ⌈2pℓ ⌉ = O(pℓ ), steps

(15) and (16) in each iteration together require O(nppij + np2ij) = O(nppij) = O(np
2

ℓ ) floating point
operations.

4 Theoretical Analysis

In this section, we provide a theoretical study of our proposed RSSM. We first prove an inequality,
which is a generalization of [LCD+21, Theorem 1] and plays an important role in the convergence
analysis of subgradient-type methods for solving weakly convex optimization over compact proximally
smooth manifolds, including Stiefel manifolds.
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Theorem 4.1 (Riemannian Subgradient Inequality). Let M be a compact R-proximally smooth
manifold in Rn×p. Suppose that h : Rn×p → R is τ -weakly convex on Rn×p for some τ ∈ R. Then,
for any bounded open convex set U containing M, there exists a constant L > 0 such that h is
L-Lipschitz continuous on U and satisfies

h(Y ) ≥ h(X) + ⟨ ∇̃Mh(X), Y −X ⟩ − τ + ∥∇̃h(X)∥/R
2

∥Y −X∥2 (17)

≥ h(X) + ⟨ ∇̃Mh(X), Y −X ⟩ − τ + L/R

2
∥Y −X∥2 (18)

for all ∇̃h(X) ∈ ∂h(X), ∇̃Mh(X) := PTXM∇̃h(X) ∈ ∂Mh(X), and X,Y ∈ M.

Proof. Note that h is τ -weakly convex on Rn×p. By [Via83, Proposition 4.4], h is L-Lipschitz on the
bounded neighborhood U containing M for some L > 0. Furthermore, for X,Y ∈ M ⊆ Rn×p, from
(6) we have for all ∇̃h(X) ∈ ∂h(X),

h(Y ) ≥ h(X) + ⟨ ∇̃h(X), Y −X ⟩ − τ
2∥Y −X ∥2

= h(X) + ⟨ PTXM∇̃h(X) + PNXM∇̃h(X), Y −X ⟩ − τ
2∥Y −X ∥2.

By uniform normal inequality (see §2.1 (2)), we obtain

⟨ PNXM∇̃h(X), Y −X ⟩ ≥ −∥PNXM∇̃h(X)∥
2R

∥Y −X ∥2 ≥ −∥∇̃h(X)∥
2R

∥Y −X ∥2.

Moreover, since ∂Mh(X) := {PTXM∇̃h(X) : ∇̃h(X) ∈ ∂h(X) }, we have

h(Y ) ≥ h(X) + ⟨ ∇̃Mh(X), Y −X ⟩ − τ + ∥∇̃h(X)∥/R
2

∥Y −X ∥2

≥ h(X) + ⟨ ∇̃Mh(X), Y −X ⟩ − τ + L/R

2
∥Y −X ∥2

for X,Y ∈ M, ∇̃h(X) ∈ ∂h(X), and ∇̃Mh(X) := PTXM∇̃h(X) ∈ ∂Mh(X).

4.1 Adaptive Coordinate Representation

Given any X ∈ St(n, p), if we fix an X⊥ ∈ St(n, n − p) such that [X X⊥] ∈ St(n, n) =: O(n),
for any ξ ∈ Rn×p, it can generate a coordinate representation (A,B) ∈ Rp×p × R(n−p)×p, namely,
ξ := XA + X⊥B = X(X⊤ξ) + X⊥(X⊤

⊥ξ). In other words, (A,B) = (X⊤ξ,X⊤
⊥ξ).

Under the viewpoint of this coordinate representation, we can rewrite the projections

(I −X−ijX
⊤
−ij)ξ = X(Iij X

⊤
ij ξ) + X⊥(X⊤

⊥ξ),

PTXij
MX−ij

(ξij)I
⊤
ij = X(Iijskew(X⊤

ij ξij)I
⊤
ij ) + X⊥(X⊤

⊥ξijI
⊤
ij ),

PTXSt(n,p)(ξ) = X(skew(X⊤ξ)) + X⊥(X⊤
⊥ξ),

where Xij , X−ij , and Iij are defined with respect to a given partition C of [p] (cf. §3 for details).
In the convergence analysis of our algorithm, it is crucial to study the simple average of the

partial Riemannian subgradient PTXij
MX−ij

(ξij)I
⊤
ij . Note that, for a given partition C, it holds that

X⊤
−ij

(
PTXij

MX−ij
(ξij)

)
= 0 for each pair {i, j}. We therefore define a linear operator AX : Rn×p →

Rn×p, called scaling operator, by

AX(ξ) :=
1

ℓ− 1

∑
(i,j):i<j

(I −X−ijX
⊤
−ij)ξijI

⊤
ij . (19)
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Under the adaptive coordinate representation associated to X, we can rewrite AX as

AX(ξ) = X

(
1

ℓ−1

∑
(i,j):i<j

IijX
⊤
ij ξijI

⊤
ij

)
+ X⊥

(
X⊤

⊥

(
1

ℓ−1

∑
(i,j):i<j

ξijI
⊤
ij

))
= X

(
1

ℓ−1Q⊡ (X⊤ξ)
)

+ X⊥(X⊤
⊥ξ). (20)

Here, Q denotes the signless graph Laplacian matrix of the complete graph on [ℓ], and we define ⊡ the
block-splitting Hadamard product with respect to C, i.e., for A := (aij) ∈ Rℓ×ℓ and B := (Bij ) ∈ Rp×p

with Bij ∈ Rpi×pj , we define A⊡B := ( aijBij ). That is to say,

Q :=


ℓ− 1 1 · · · 1

1 ℓ− 1 1
...

. . .
. . .

...
1 1 · · · ℓ− 1

 ,

AX(ξ) := X


X⊤

1 ξ1
1

ℓ−1X
⊤
1 ξ2 · · · 1

ℓ−1X
⊤
1 ξℓ

1
ℓ−1X

⊤
2 ξ1 X⊤

2 ξ2
1

ℓ−1X
⊤
2 ξℓ

...
. . .

. . .
...

1
ℓ−1X

⊤
ℓ ξ1

1
ℓ−1X

⊤
ℓ ξ2 · · · X⊤

ℓ ξℓ

+ X⊥

(
X⊤

⊥ξ
)
.

We see from Lemma A.1 that AX and PTXSt(n,p) are commutative, and AX ◦ PTXSt(n,p)(ξ) =
1

ℓ−1

∑
(i,j):i<j PTXij

MX−ij
(ξij)I

⊤
ij . We also learn from Lemma A.2 that AX is self-adjoint and has

eigenvalues 1 and 1
ℓ−1 with multiplicities (n−p)p+

∑ℓ
i=1 p

2
i and p2−

∑ℓ
i=1 p

2
i respectively. Therefore,

AX is positive definite. With this scaling operator AX , we can define the Mahalanobis inner products
and norms on Rn×p, namely ⟨ ξ, η ⟩A−1

X
:= ⟨A−1

X (ξ), η ⟩ and ∥ξ∥A−1
X

:= ⟨A−1
X (ξ), ξ ⟩.

The following lemma highlights our main purpose of introducing the inner product ⟨ · , · ⟩A−1
X

and

the norm ∥ · ∥A−1
X

:

Lemma 4.2 (Simple Average of Partial Subgradient). Let X ∈ St(n, p) and C be a partition of [p]
with ℓ := |C| ≥ 2. Suppose {i, j} ∼ Uniform

(
[ℓ]
2

)
(conditional on X). Then, for any η ∈ Rn×p that is

conditionally deterministic given X and ∇̃f(X), we have

E
[
⟨ ∇̃ijf(X)I⊤ij , η ⟩A−1

X

∣∣∣X, ∇̃f(X)
]

= 2
ℓ ⟨ ∇̃St(n,p)f(X), η ⟩, (21)

E
[
∥∇̃ijf(X)I⊤ij∥2A−1

X

∣∣∣X, ∇̃f(X)
]

= 2
ℓ∥∇̃St(n,p)f(X)∥2, (22)

where ∇̃f(X) ∈ ∂f(X) is a full Euclidean subgradient of f at X.

Proof. Conditional on X and ∇̃f(X) ∈ ∂f(X), we have ∇̃ijf(X) := PTXij
MX−ij

(∇̃f(X)Iij) for

{i, j} ∈
(
[ℓ]
2

)
. Thus, by Lemma A.1, for any conditionally deterministic η ∈ Rn×p,

E
[
⟨ ∇̃ijf(X)I⊤ij , η ⟩A−1

X

∣∣∣X, ∇̃f(X)
]

=

〈
1

(ℓ
2)

∑
(i,j):i<j

PTXij
MX−ij

(∇̃f(X)Iij)I
⊤
ij , η

〉
A−1

X

= 2
ℓ

〈
AX ◦ PTXSt(n,p)(∇̃f(X)), η

〉
A−1

X

= 2
ℓ ⟨ ∇̃St(n,p)f(X), η ⟩,
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i.e, (21) is proved. By (35) in Lemma A.1 and PTXij
MX−ij

◦ PTXij
MX−ij

= PTXij
MX−ij

, we have

⟨ ∇̃ijf(X)I⊤ij , ∇̃f(X) ⟩A−1
X

=
〈
A−1

X

(
PTXij

MX−ij
(∇̃f(X)Iij)I

⊤
ij

)
, ∇̃f(X)

〉
=
〈
PTXij

MX−ij

{
A−1

X

(
PTXij

MX−ij
(∇̃f(X)Iij)I

⊤
ij

)
Iij

}
I⊤ij , ∇̃f(X)

〉
=
〈
A−1

X

(
PTXij

MX−ij
(∇̃f(X)Iij)I

⊤
ij

)
,PTXij

MX−ij
(∇̃f(X)Iij)I

⊤
ij

〉
= ∥∇̃ijf(X)I⊤ij∥2A−1

X

.

Therefore, (22) follows from (21) by putting η := ∇̃f(X).

Now we state below a lemma that relates the two Mahalanobis norms ∥·∥A−1
X

and ∥·∥A−1

X+
, where

X+
ij := PMX−ij

(Xij − γ∇̃ijf(X)) and X+
−ij := X−ij with a given {i, j} ∈

(
[ℓ]
2

)
.

Lemma 4.3 (Almost Isometry Property). Let X ∈ St(n, p) and C be a partition of [p] with ℓ := |C| ≥
2. Suppose X+ ∈ St(n, p) such that X+

ij := PMX−ij
(Xij − γ∇̃ijf(X)), γ ∈

(
0, 1

L

)
and X+

−ij := X−ij

with {i, j} ∼ Uniform
(
[ℓ]
2

)
. Then, for any Y ∈ St(n, p) that is conditionally deterministic given X,

we have

E
[
∥Y −X+∥2A−1

X+

∣∣∣∣X]
≤ E

[
∥Y −X+∥2A−1

X

∣∣∣X]
+ 4γ

ℓ (ℓ− 2)L∥Y −X∥2 + 2γ2L2

ℓ (ℓ− 2)
[
∥Y −X∥2 + γL(∥Y −X∥2 + 1) + 2∥Y −X∥

]
. (23)

Before going to the proof, we state a useful lemma that characterizes the operator norm of the
difference between two orthogonal projections. We refer the readers to [GVL13, Theorem 2.5.1]) for
the proof of Lemma 4.4.

Lemma 4.4. Let X,Y ∈ St(n, p) and X⊥, Y⊥ ∈ St(n, n − p) be such that [X X⊥], [Y Y⊥] ∈ O(n).
Then, we have ∥XX⊤ − Y Y ⊤∥op = ∥X⊤

⊥Y ∥op = ∥Y ⊤
⊥ X∥op.

Proof of Lemma 4.3. Let X ∈ St(n, p) and X+ ∈ St(n, p) such that X+
ij := PMX−ij

(Xij−γ∇̃ijf(X)))

and X+
−ij := X−ij with a given {i, j} ∈

(
[ℓ]
2

)
. For the sake of clarity, we denote by ΨX(ξ) :=

X
[
(J − I) ⊡ (X⊤ξ)

]
for any ξ ∈ Rn×p, which is self-adjoint. By (38) in Lemma A.3, we have

∥Y −X+∥2A−1

X+
− ∥Y −X+∥2A−1

X

= ⟨A−1
X+(Y −X+), Y −X+⟩ − ⟨A−1

X (Y −X+), Y −X+⟩
= (ℓ− 2)⟨ (ΨX+ − ΨX)(Y −X+), Y −X+ ⟩
= (ℓ− 2) (⟨ (ΨX+ − ΨX)(Y −X), Y −X ⟩

+ 2 ⟨ (ΨX+ − ΨX)(X −X+), Y −X ⟩ + ⟨ (ΨX+ − ΨX)(X −X+), X −X+ ⟩
)
.

For all ξ ∈ Rn×p, we can write

(ΨX+ − ΨX)(ξ) = (X+
i X+

i
⊤ −XiX

⊤
i )ξ−iI

⊤
−i + (X+

j X+
j
⊤ −XjX

⊤
j )ξ−jI

⊤
−j (24)
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and

⟨ (ΨX+ − ΨX)(ξ), ξ ⟩ =
(
∥X+

i
⊤ξ−i∥2 − ∥X⊤

i ξ−i∥2
)

+
(
∥X+

j
⊤ξ−j∥2 − ∥X⊤

j ξ−j∥2
)

= ⟨ (X+
i + Xi)

⊤ξ−i, (X
+
i −Xi)

⊤ξ−i ⟩ + ⟨ (X+
j + Xj)

⊤ξ−j , (X
+
j −Xj)

⊤ξ−j ⟩

≤ ∥(X+
i + Xi)

⊤ξ−i∥∥X+
i −Xi∥∥ξ−i∥ + ∥(X+

j + Xj)
⊤ξ−j∥∥X+

j −Xj∥∥ξ−j∥

≤ ∥(X+
i + Xi)

⊤ξ∥∥X+
i −Xi∥∥ξ∥ + ∥(X+

j + Xj)
⊤ξ∥∥X+

j −Xj∥∥ξ∥

≤ ∥(X+
ij + Xij)

⊤ξ∥∥X+
ij −Xij∥∥ξ∥ ≤ γ∥∇̃ijf(X)∥∥(X+

ij + Xij)
⊤ξ∥∥ξ∥.

Since γ < 1
L , by the second-order boundedness condition (11), we have

∥(X+
ij + Xij)

⊤ξ∥ = ∥(2Xij − γ∇̃ijf(X) + X+
ij −Xij + γ∇̃ijf(X))⊤ξ∥

≤ 2∥X⊤
ij ξ∥ + γ∥∇̃ijf(X)∥ ∥ξ∥ + γ2∥∇̃ijf(X)∥2 ∥ξ∥.

This means, especially when ξ ∈ Rn×p is conditionally deterministic given X, we have

⟨ (ΨX+ − ΨX)(ξ), ξ ⟩ ≤ 2γ∥∇̃ijf(X)∥∥X⊤
ij ξ∥∥ξ∥ + γ2∥∇̃ijf(X)∥2 ∥ξ∥2 + γ3∥∇̃ijf(X)∥3 ∥ξ∥2.

Since Y −X is conditionally deterministic given X, we have

⟨ (ΨX+ − ΨX)(Y −X), Y −X ⟩

≤ 2γ∥∇̃ijf(X)∥∥X⊤
ij (Y −X)∥∥Y −X∥ + γ2∥∇̃ijf(X)∥2 ∥Y −X∥2 + γ3∥∇̃ijf(X)∥3 ∥Y −X∥2.

(25)

Now, by applying (24) on ξ := X − X+ to get the first inequality and Lemma 4.4 to get the
second inequality, we have

∥(ΨX+ − ΨX)(X −X+)∥ ≤ ∥X+
ijX

+
ij
⊤ −XijX

⊤
ij∥op∥X −X+∥ ≤ ∥(I −XijX

⊤
ij )X+

ij∥op∥Xij −X+
ij∥

= ∥(I −XijX
⊤
ij )(X+

ij −Xij)∥op∥Xij −X+
ij∥

≤ ∥Xij −X+
ij∥

2 ≤ γ2∥∇̃ijf(X)∥2. (26)

Combining (25) and (26) yields

∥Y −X+∥2A−1

X+
− ∥Y −X+∥2A−1

X

≤ (ℓ− 2) (⟨ (ΨX+ − ΨX)(Y −X), Y −X ⟩
+ 2 ∥(ΨX+ − ΨX)(X −X+)∥ ∥Y −X∥ + ∥(ΨX+ − ΨX)(X −X+)∥ ∥X −X+∥

)
≤ (ℓ− 2)

(
2γ∥∇̃ijf(X)∥∥X⊤

ij (Y −X)∥∥Y −X∥ + γ2∥∇̃ijf(X)∥2 ∥Y −X∥2

+ γ3∥∇̃ijf(X)∥3 ∥Y −X∥2 + 2γ2∥∇̃ijf(X)∥2∥Y −X∥ + γ3∥∇̃ijf(X)∥3
)
.
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Conditional on X and ∇̃f(X), from (21) and (22) in Lemma 4.2 we have

E
[
∥Y −X+∥2A−1

X+

∣∣∣∣X, ∇̃f(X)

]
≤ E

[
∥Y −X+∥2A−1

X

∣∣∣X, ∇̃f(X)
]

+ 2(ℓ− 2)
(
2γ
ℓ ∥∇̃St(n,p)f(X)∥∥X⊤(Y −X)∥∥Y −X∥ + γ2

ℓ ∥∇̃St(n,p)f(X)∥2 ∥Y −X∥2

+ γ3

ℓ ∥∇̃St(n,p)f(X)∥3 (∥Y −X∥2 + 1) + 2γ2

ℓ ∥∇̃St(n,p)f(X)∥2∥Y −X∥
)

≤ E
[
∥Y −X+∥2A−1

X

∣∣∣X, ∇̃f(X)
]

+ 4γ
ℓ (ℓ− 2)L∥Y −X∥2 + 2γ2L2

ℓ (ℓ− 2)
[
∥Y −X∥2 + γL(∥Y −X∥2 + 1) + 2∥Y −X∥

]
,

i.e., (23) follows by taking expectation over ∇̃f(X) ∈ ∂f(X).

4.2 Adaptive Moreau Envelope, Adaptive Proximal Mapping, and Surrogate
Stationarity Measure

Given a partition C of [p] and a fixed X ∈ St(n, p), the Bregman divergence associated to the convex
function 1

2∥ · ∥
2
A−1

X

is given by D∥ · ∥A−1
X

(Y, Z) = 1
2∥Y − Z∥2A−1

X

, which is symmetric. We can consider

the Bregman-Moreau envelope and the Bregman-proximal map of a weakly convex function f over
St(n, p) associated to 1

2∥ · ∥2A−1
X

, and then evaluate them at X ∈ St(n, p) to construct our adaptive

Moreau envelope, adaptive proximal mapping and the surrogate stationarity measure of f respectively
as follows:

fC
λ (X) := min

Y ∈St(n,p)

{
f(Y ) + 1

2λ ∥Y −X∥2A−1
X

}
, (27)

P C
λf (X) := argmin

Y ∈St(n,p)

{
f(Y ) + 1

2λ ∥Y −X∥2A−1
X

}
, (28)

ΘC
λ(X) := 1

λ∥P
C
λf (X) −X∥. (29)

Following the similar idea in [WHC+23, Lemma 4.2], we show that, like the standard proxi-
mal map, our adaptive proximal map in (28) is also single-valued and Lipschitz continuous over
consecutive iterates X,X+ ∈ St(n, p).

Lemma 4.5. Let f : Rn×p → R be a τ -weakly convex function which is automatically L-Lipschitz
continuous on some convex neighborhood of St(n, p) for some L > 0. For λ < 1

τ+(2ℓ−1)L , the adap-

tive proximal map P C
λf is single-valued and Lipschitz continuous over consecutive iterates X,X+ ∈

St(n, p) as in Lemma 4.3 with a constant ℓ−1
1−λ(τ+(2ℓ−1)L) .

Proof. For any X ∈ St(n, p), we have hX := f + 1
2λ∥ · −X∥2A−1

X

is
(
1
λ − τ

)
-strongly convex where

1
λ > τ is to be determined, and ∂hX(Z) = ∂f(Z) + 1

λ A−1
X (Z −X) for any Z ∈ Rn×p.

If Z ∈ P C
λf (X) = argminZ′∈St(n,p) hX(Z ′), then hX(Z) := f(Z) + 1

2λ∥Z −X∥2A−1
X

≤ f(X), which

implies 1
2λ∥Z−X∥2 ≤ 1

2λ∥Z−X∥2A−1
X

≤ f(X)−f(Z) ≤ L ∥Z−X∥, i.e., ∥Z−X∥ ≤ 2λL. Furthermore,

we obtain

∥∇̃hX(Z)∥ ≤ ∥∇̃f(Z)∥ + 1
λ∥A

−1
X ∥op∥Z −X∥ ≤ L + 1

λ(ℓ− 1) · 2λL = (2ℓ− 1)L
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for all ∇̃hX(Z) ∈ ∂hX(Z) and ∇̃f(Z) such that ∇̃hX(Z) = ∇̃f(Z) + 1
λ A−1

X (Z −X).
To prove that P C

λf is single-valued, letting Z, Y ∈ P C
λf (X) and applying (17) of Theorem 4.1 to

hX at Z and Y yield

hX(Y ) ≥ hX(Z) +
1
λ
−τ−(2ℓ−1)L

2 ∥Y − Z∥2 and hX(Z) ≥ hX(Y ) +
1
λ
−τ−(2ℓ−1)L

2 ∥Y − Z∥2,

which implies ∥Y − Z∥2 ≤ 0, i.e, Z = Y by setting λ < 1
τ+(2ℓ−1)L .

Let X,X+ ∈ St(n, p) be consecutive iterates as in Lemma 4.3, and we want to show the Lipschitz
property of P C

λf . Applying (17) of Theorem 4.1 to hX and hX+ at P C
λf (X) and P C

λf (X+) respectively,
we have

hX(P C
λf (X+)) ≥ hX(P C

λf (X)) +
1
λ
−τ−(2ℓ−1)L

2 ∥P C
λf (X+) − P C

λf (X)∥2,

hX+(P C
λf (X)) ≥ hX+(P C

λf (X+)) +
1
λ
−τ−(2ℓ−1)L

2 ∥P C
λf (X) − P C

λf (X+)∥2.

Summing these two inequalities, we get(
1
λ − τ − (2ℓ− 1)L

)
∥P C

λf (X) − P C
λf (X+)∥2

≤ hX(P C
λf (X+)) − hX(P C

λf (X)) + hX+(P C
λf (X)) − hX+(P C

λf (X+))

= 1
2λ

(
∥P C

λf (X+) −X∥2A−1
X

− ∥P C
λf (X) −X∥2A−1

X

+ ∥P C
λf (X) −X+∥2A−1

X+

− ∥P C
λf (X+) −X+∥2A−1

X+

)
= 1

2λ

(
∥P C

λf (X+)∥2A−1
X

− ∥P C
λf (X+)∥2A−1

X+

+ ∥P C
λf (X)∥2A−1

X+

− ∥P C
λf (X)∥2A−1

X

− 2 ⟨P C
λf (X+), X ⟩ + 2 ⟨P C

λf (X), X ⟩ − 2 ⟨P C
λf (X), X+ ⟩ + 2 ⟨P C

λf (X+), X+ ⟩
)

≤ ℓ−2
λ ∥X+ −X∥∥P C

λf (X+) − P C
λf (X)∥ + 1

λ ⟨P C
λf (X+) − P C

λf (X), X+ −X ⟩

≤ ℓ−1
λ ∥X+ −X∥∥P C

λf (X+) − P C
λf (X)∥,

where the second equality follows from the facts that A−1
X (X) = X and A−1

X+(X+) = X+, and the
second inequality follows from (39) in Lemma A.4 and the Cauchy-Schwarz inequality. Thus, we
have P C

λf is Lipschitz over consecutive iterates X and X+ with a constant ℓ−1
1−λ(τ+(2ℓ−1)L) .

Proposition 4.6 (Surrogate Stationarity Measure). Let f : Rn×p → R be a τ -weakly convex function
and be L-Lipschitz continuous on some neighborhood of St(n, p) for some L > 0. Suppose λ <

1
τ+(2ℓ−1)L so that P C

λf is well-defined and single-valued. Then, the following assertions hold:

(a) fC
λ (X) ≤ f(X) −

1
λ
−τ−(2ℓ−1)L

2 ∥P C
λf (X) −X∥2.

(b) dist(0, ∂St(n,p)f(P C
λf (X))) ≤ ℓ−1

λ ∥P C
λf (X) −X∥ = (ℓ− 1)ΘC

λ(X), and

(1 − λ(τ + ℓL)) ΘC
λ(X) = 1−λ(τ+ℓL)

λ ∥P C
λf (X) −X∥ ≤ dist(0, ∂St(n,p)f(X)).

(c) ΘC
λ(X) = 0 ⇔ X = P C

λf (X) ⇔ 0 ∈ ∂St(n,p)f(X).

Proof. (a) Let X ∈ St(n, p). Due to
(
1
λ − τ

)
-strong convexity and bounded subgradient norm of

hX := f + 1
2λ∥ · −X∥2A−1

X

at P C
λf (X), applying (17) of Theorem 4.1 on hX at P C

λf (X) yields

f(X) ≥ f(P C
λf (X)) + 1

2λ∥P
C
λf (X) −X∥2A−1

X

+
1
λ
−τ−(2ℓ−1)L

2 ∥P C
λf (X) −X∥2

≥ fC
λ (X) +

1
λ
−τ−(2ℓ−1)L

2 ∥P C
λf (X) −X∥2.
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(b) Let Z := P C
λf (X). By optimality, PTZSt(n,p)

(
1
λ A−1

X (X − Z)
)
∈ ∂St(n,p)f(Z). This implies

dist(0, ∂St(n,p)f(Z)) ≤ 1
λ ∥A−1

X ∥op∥X − Z∥ ≤ ℓ−1
λ ∥X − Z∥. Now, let V ∈ ∂St(n,p)f(X). By (18)

of Theorem 4.1,

f(Z) ≥ f(X) + ⟨V,Z −X ⟩ − τ+L
2 ∥Z −X∥2,

⟨V,X − Z ⟩ ≥
2
λ
−τ−(2ℓ−1)L

2 ∥Z −X∥2 − τ+L
2 ∥Z −X∥2 ≥

(
1
λ − τ − ℓL

)
∥Z −X∥2

by (a). This implies ∥V ∥ ≥
(
1
λ − τ − ℓL

)
∥Z − X∥, where 1

λ − τ − ℓL > (2ℓ − 1)L − ℓL =
(ℓ− 1)L ≥ L > 0. Hence, the result follows.

(c) This result directly follows from part (b).

4.3 Convergence of RSSM to Stationary Points

In this subsection, we will show that every accumulation point of the random iterates of Algorithm
1 is a stationary point of (1) almost surely. To this end, we first derive a basic recursion result.

Lemma 4.7 (Basic Recursion Result). Let f : Rn×p → R be a τ -weakly convex function which is
L-Lipschitz continuous on some neighborhood of St(n, p) for some L > 0, and C be a partition of [p]
with ℓ := |C| ≥ 2. Let {Xk} ⊆ St(n, p) be the random sequence of iterates generated by Algorithm 1.
Then, for all Y ∈ St(n, p) that is conditionally deterministic given Xk, we have

E
[
∥Y −Xk+1∥2A−1

Xk+1

∣∣∣∣Xk

]
≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ

[
f(Y ) − f(Xk) + τ+(2ℓ−3)L

2 ∥Y −Xk∥2
]

+
2γ2

kL
2

ℓ

(
1 + (ℓ− 2)

[
(1 + γkL)∥Y −Xk∥2 + 4 ∥Y −Xk∥ + γkL(3 + γkL)

] )
. (30)

Proof. Let Y ∈ St(n, p) and {i, j} ∼ Uniform
(
[ℓ]
2

)
be selected. By the second-order boundedness

condition (11) due to γkL < 1, we have ∥Xk+1
ij −Xk

ij + γk∇̃ijf(Xk)∥ ≤ γ2k∥∇̃ijf(Xk)∥2. Then, we
obtain

∥Y −Xk+1∥2A−1

Xk

= ∥Y −Xk+1∥2 + ∥Y −Xk+1∥2A−1

Xk−I

≤ ∥Y −Xk + γk∇̃ijf(Xk)I⊤ij∥2

+

(
∥Y −Xk + γk∇̃ijf(Xk)I⊤ij∥A−1

Xk−I + ∥A−1
Xk − I∥1/2op ∥Xk+1 −Xk + γk∇̃ijf(Xk)I⊤ij∥

)2

≤ ∥Y −Xk + γk∇̃ijf(Xk)I⊤ij∥2A−1

Xk

+ 2(ℓ− 2) γ2k ∥∇̃ijf(Xk)∥2 ∥Y −Xk + γk∇̃ijf(Xk)I⊤ij∥ + (ℓ− 2) γ4k∥∇̃ijf(Xk)∥4

≤ ∥Y −Xk∥2A−1

Xk

+ 2γk ⟨ ∇̃ijf(Xk)I⊤ij , Y −Xk ⟩A−1

Xk
+ γ2k ∥∇̃ijf(Xk)I⊤ij∥2A−1

Xk

+ (ℓ− 2)
(

2γ2k ∥∇̃ijf(Xk)∥2 ∥Y −Xk∥ + 2γ3k∥∇̃ijf(Xk)∥3 + γ4k∥∇̃ijf(Xk)∥4
)
.

Here, I : Rn×p → Rn×p in the first equality means the identity operator, the first inequality holds
because of the Lipschitz-like property (10) and the fact that Y −Xk+1 = (Y −Xk+γk∇̃ijf(Xk)I⊤ij )−
(Xk+1 −Xk + γk∇̃ijf(Xk)I⊤ij ), and the second inequality is due to ∥A−1

Xk − I∥op = ℓ− 2.

15



Conditional on Xk and ∇̃f(Xk), we have

E
[
∥Y −Xk+1∥2A−1

Xk

∣∣∣∣Xk, ∇̃f(Xk)

]
≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ ⟨ ∇̃St(n,p)f(Xk), Y −Xk ⟩ +

2γ2
k
ℓ ∥∇̃St(n,p)f(Xk)∥2

+
2γ2

k
ℓ (ℓ− 2)

(
2 ∥∇̃St(n,p)f(Xk)∥2 ∥Y −Xk∥ + 2γk∥∇̃St(n,p)f(Xk)∥3 + γ2k∥∇̃St(n,p)f(Xk)∥4

)
≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ ⟨ ∇̃St(n,p)f(Xk), Y −Xk ⟩ +

2γ2
kL

2

ℓ

(
1 + (ℓ− 2)

[
2 ∥Y −Xk∥ + 2γkL + γ2kL

2
] )

≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ

[
f(Y ) − f(Xk) + τ+L

2 ∥Y −Xk∥2
]

+
2γ2

kL
2

ℓ

(
1 + (ℓ− 2)

[
2 ∥Y −Xk∥ + 2γkL + γ2kL

2
] )

,

where the first inequality follows from the fact ∥∇̃ijf(Xk)∥ ≤ ∥∇̃St(n,p)f(Xk)∥ and (21) and (22) in

Lemma 4.2, the second inequality holds because ∥∇̃St(n,p)f(Xk)∥ ≤ L, and the last inequality comes
from the Riemannian subgradient inequality (18) in Theorem 4.1.

Therefore, after taking expectation over ∇̃f(Xk) ∈ ∂f(Xk), it follows from (23) that

E
[
∥Y −Xk+1∥2A−1

Xk+1

∣∣∣∣Xk

]
≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ

[
f(Y ) − f(Xk) + τ+L

2 ∥Y −Xk∥2
]

+
2γ2

kL
2

ℓ

(
1 + (ℓ− 2)

[
2 ∥Y −Xk∥ + 2γkL + γ2kL

2
] )

+ 4γk
ℓ (ℓ− 2)L∥Y −Xk∥2 +

2γ2
kL

2

ℓ (ℓ− 2)
[
∥Y −Xk∥2 + γkL(∥Y −Xk∥2 + 1) + 2∥Y −Xk∥

]
≤ ∥Y −Xk∥2A−1

Xk

+ 4γk
ℓ

[
f(Y ) − f(Xk) + τ+(2ℓ−3)L

2 ∥Y −Xk∥2
]

+
2γ2

kL
2

ℓ

(
1 + (ℓ− 2)

[
(1 + γkL)∥Y −Xk∥2 + 4 ∥Y −Xk∥ + γkL(3 + γkL)

] )
,

which is (30).

The following proposition presents a sufficient decrease result for the surrogate stationarity mea-
sure ΘC

λ, which plays an important role in proving the convergence results of Algorithm 1.

Proposition 4.8 (Sufficient Decrease). Let f : Rn×p → R be a τ -weakly convex function which is
L-Lipschitz continuous on some neighborhood of St(n, p) for some L > 0, and C be a partition of [p]
with ℓ := |C| ≥ 2. Suppose that {Xk} ⊆ St(n, p) is the random sequence generated by the Algorithm

1. Then, for λ ∈
(

0, 1
τ+(2ℓ−1)L

)
and k ≥ 0, we have, conditional on Xk,

γkΘC
λ(Xk)2 :=

γk
λ2

∥P C
λf (Xk) −Xk∥2 ≤

fC
λ (Xk) − E[ fC

λ (Xk+1) |Xk ] +
γ2
kL

2

λℓ

(
1 + 68

9 (ℓ− 2)
)

λ
ℓ

[
1
λ − (τ + (2ℓ− 3)L)

] . (31)
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Proof. Putting Y := P C
λf (Xk) ∈ St(n, p) into the basic recursion result (30) in Lemma 4.7, we have

E[ fC
λ (Xk+1) |Xk ] ≤ E

[
f(P C

λf (Xk)) + 1
2λ∥P

C
λf (Xk) −Xk+1∥2A−1

Xk+1

∣∣∣∣Xk

]
≤ fC

λ (Xk) + 2γk
λℓ

[
f(P C

λf (Xk)) − f(Xk) + τ+(2ℓ−3)L
2 ∥P C

λf (Xk) −Xk∥2
]

+
γ2
kL

2

λℓ

(
1 + (ℓ− 2)

[
(1 + γkL)∥P C

λf (Xk) −Xk∥2 + 4 ∥P C
λf (Xk) −Xk∥ + γkL(3 + γkL)

] )
≤ fC

λ (Xk) + λ
ℓ

(
τ + (2ℓ− 3)L− 1

λ

)
· γkΘC

λ(Xk)2

+
γ2
kL

2

λℓ

(
1 + (ℓ− 2)

[
(1 + γkL) 4λ2L2 + 8λL + γkL(3 + γkL)

] )
< fC

λ (Xk) + λ
ℓ

(
τ + (2ℓ− 3)L− 1

λ

)
· γkΘC

λ(Xk)2

+
γ2
kL

2

λℓ

(
1 + (ℓ− 2)

[
4(1+γkL)
(2ℓ−1)2

+ 8
2ℓ−1 + γkL(3 + γkL)

] )
< fC

λ (Xk) + λ
ℓ

(
τ + (2ℓ− 3)L− 1

λ

)
· γkΘC

λ(Xk)2 +
γ2
kL

2

λℓ

(
1 + (ℓ− 2) · 4(4ℓ2+1)

(2ℓ−1)2

)
≤ fC

λ (Xk) + λ
ℓ

(
τ + (2ℓ− 3)L− 1

λ

)
· γkΘC

λ(Xk)2 +
γ2
kL

2

λℓ

(
1 + 68

9 (ℓ− 2)
)

for λ ∈
(

0, 1
τ+(2ℓ−1)L

)
. Here, the third inequality is due to the facts that f(P C

λf (Xk))+ 1
2λ∥P

C
λf (Xk)−

Xk∥2A−1

Xk

≤ f(Xk) and ∥P C
λf (Xk) −Xk∥ ≤ 2λL. The fourth inequality follows from λ < 1

τ+(2ℓ−1)L <

1
(2ℓ−1)L and γk < 1

L .

Therefore, for λ ∈
(

0, 1
τ+(2ℓ−1)L

)
, we have

γkΘC
λ(Xk)2 ≤

fC
λ (Xk) − E[ fC

λ (Xk+1) |Xk ] +
γ2
kL

2

λℓ

(
1 + 68

9 (ℓ− 2)
)

λ
ℓ

[
1
λ − (τ + (2ℓ− 3)L)

] ,

which is (31).

By choosing suitable constant or diminishing stepsizes, we can obtain the following iteration
complexity result for our RSSM (Algorithm 1):

Theorem 4.9. Let f : Rn×p → R be a τ -weakly convex function which is L-Lipschitz continuous on
some neighborhood of St(n, p) for some L > 0, and C be a partition of [p] with ℓ := |C| ≥ 2. Suppose

{Xk} ⊆ St(n, p) is the random sequence generated by the Algorithm 1, and λ ∈
(

0, 1
τ+(2ℓ−1)L

)
.

(a) If we choose the constant stepsize γk := ∆√
T+1

∈
(
0, 1

L

)
for some ∆ > 0, then

min
0≤k≤T

E[ΘC
λ(Xk)2] ≤

fC
λ (X0) − min

X∈St(n,p)
fC
λ (X) + ∆2L2

λℓ

(
1 + 68

9 (ℓ− 2)
)

λ
ℓ

(
1
λ − (τ + (2ℓ− 3)L)

)
· ∆

√
T + 1

.

(b) If we choose the diminishing stepsize γk := ∆√
k+1

∈
(
0, 1

L

)
for some ∆ > 0, then

min
0≤k≤T

E[ΘC
λ(Xk)2] ≤

fC
λ (X0) − min

X∈St(n,p)
fC
λ (X) + ∆2L2

λℓ

(
1 + 68

9 (ℓ− 2)
)

(1 + log T )

λ
ℓ

(
1
λ − (τ + (2ℓ− 3)L)

)
· ∆

√
T + 1

.

Here, E[ΘC
λ(Xk)2] is taken over all random paths of random iterate Xk in the algorithm.
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Proof. Taking expectation on Xk in the result of Proposition 4.8, we have

γk E[ΘC
λ(Xk)2] ≤

E
[
fC
λ (Xk)

]
− E

[
fC
λ (Xk+1)

]
+

γ2
kL

2

λℓ

(
1 + 68

9 (ℓ− 2)
)

λ
ℓ

(
1
λ − (τ + (2ℓ− 3)L)

) . (32)

Summing (32) over k = 0, . . . , T gives

min
0≤k≤T

E[ ΘC
λ(Xk)2 ] ≤

fC
λ (X0) − E[ fC

λ (XT+1)] + L2

λℓ

(
1 + 68

9 (ℓ− 2)
)∑T

k=0 γ
2
k

λ
ℓ

(
1
λ − (τ + (2ℓ− 3)L)

)∑T
k=0 γk

. (33)

The result in (a) follows from the fact that
∑T

k=0 γk = ∆
√
T + 1 and

∑T
k=0 γ

2
k = ∆2 by putting

γk := ∆√
T+1

∈
(
0, 1

L

)
in the inequality (33). On the other hand, if we choose γk := ∆√

k+1
∈
(
0, 1

L

)
in the inequality (33), then we have

∑T
k=0 γ

2
k =

∑T
k=0

∆2

k+1 ≤ ∆2
(

1 +
∫ T
1

du
u

)
= ∆2(1 + log T ) and

γk ≥ γT = ∆√
T+1

for k ≤ T , which implies
∑T

k=0 γk ≥ ∆
√
T + 1. Hence, the result in (b) follows.

If we take λ := 1
2(τ+(2ℓ−3)L) , and choose the constant stepsizes γk := ∆√

T+1
, from Theorem 4.9,

min
0≤k≤T

E[ΘC
λ(Xk)] ≤ min

0≤k≤T

√
E[ΘC

λ(Xk)2]

≤

√
2ℓ
∆

(
fλ(X0) − min

X∈St(n,p)
fλ(X)

)
+ 32ℓL2∆(τ + (2ℓ− 3)L)

4
√
T + 1

.

This means we can prove that our RSSM can compute an ε-nearly stationary point in terms of the

expectation of the surrogate stationarity measure of iterates within O(
(
ℓ
2

)2
ε−4) iterations.

Lemma 4.10 (Convergence Lemma). (see [ZCZL22, Lemma 3.1]) Consider the sequences {Y k} in
Rn×p and {µk} in R+. Let Φ : Rd → Rm be LΦ-Lipschitz continuous over consecutive iterates in
{Y k}. Suppose further there exists p > 0 such that

� M > 0 such that ∥Y k − Y k+1∥ ≤ Mµk for all k

�
∑

k µk = ∞

� there exists Φ̄ ∈ Rm such that
∑

k µk∥Φ(Y k) − Φ̄∥p < ∞.

Then, we have limk→∞ ∥Φ(Y k) − Φ̄∥p = 0.

By employing the supermartingale convergence theorem (see [ZCZL22, Theorem 2.1]) and a
convergence lemma (see Lemma 4.10) modified from [ZCZL22, Lemma 3.1], we obtain the following
almost-sure convergence result for ΘC

λ(Xk) of the iterates:

Theorem 4.11 (Almost-Sure Convergence). Let f : Rn×p → R be a τ -weakly convex function which
is L-Lipschitz continuous on some neighborhood of St(n, p) for some L > 0. Suppose {Xk} ⊆ St(n, p)
is the random sequence generated by the Algorithm 1 with the stepsizes {γk} satisfying

∑
k γk = ∞

and
∑

k γ
2
k ≤ γ̄ < ∞. Then, for λ ∈

(
0, 1

τ+(2ℓ−1)L

)
, lim
k→∞

ΘC
λ(Xk) = 0 almost surely. Hence, every

accumulation point of {Xk} is a stationary point of (1) almost surely.
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Proof. By Proposition 4.8, we have

E
[
fC
λ (Xk+1) − f∗ ∣∣Xk

]
≤
(
fC
λ (Xk) − f∗)− λ

ℓ

(
1
λ − (τ + (2ℓ− 3)L)

)
· γkΘC

λ(Xk)2 +
γ2
kL

2

λℓ

(
1 + 68

9 (ℓ− 2)
)
.

If
∑

k γ
2
k < ∞, by Robbins-Siegmund Theorem or Supermartingale Convergence Theorem (cf.

[ZCZL22, Theorem 2.1]) we can conclude fC
λ (Xk) − f∗ almost surely converges to a finite random

variable and
∑

k γkΘC
λ(Xk)2 < ∞ almost surely.

Let Ω1 :=
{
ω ∈ Ω :

∑
k γkΘC

λ(Xk(ω))2 < ∞
}

, i.e., P(Ω1) = 1. By Lemma 4.5, P C
λf is Lipschitz over

consecutive iterates. Hence, ΘC
λ is also Lipschitz continuous over consecutive iterates. Furthermore,∑

k γk = ∞ and ∥Xk −Xk+1 ∥ ≤ Lγk for all k. By Lemma 4.10, we have lim
k→∞

ΘC
λ(Xk(ω)) = 0 for

all ω ∈ Ω1, i.e., lim
k→∞

ΘC
λ(Xk) = 0 almost surely. This means every accumulation point of {Xk} is a

stationary point of (1) almost surely.

We also derive the following almost-sure asymptotic convergence rate result:

Theorem 4.12 (Almost-Sure Asymptotic Convergence Rate). Let f : Rn×p → R be a τ -weakly
convex function which is L-Lipschitz continuous on some neighborhood of St(n, p) for some L > 0.
Suppose {Xk} ⊆ St(n, p) is the random sequence generated by the Algorithm 1 with the stepsizes

γk := ∆√
k+2 log(k+2)

for some ∆ > 0. Then, for λ ∈
(

0, 1
τ+(2ℓ−1)L

)
, we have lim inf

k→∞
4
√
k + 2 ΘC

λ(Xk) =

0 almost surely.

Proof. Observe that
∑K

k=0 γ
2
k ≤ γ20 +

∫K
0

∆2du
(u+2) log(u+2)2

≤ γ20 + ∆2

log 2 < 2∆2

(log 2)2
, and

∑K
k=0 γk ≥∑K

k=0
∆√

K+2 log(K+2)
= ∆(K+1)√

K+2 log(K+2)
→ +∞. Let Ω̃δ := {ω ∈ Ω : lim inf

k→∞

√
k + 2 ΘC

λ(Xk(ω))2 ≥ δ }

and assume P(Ω̃δ) > 0 for some δ > 0. This means there exists a large k̄ such that P(
⋂

k≥k̄ Ω̃δ,k ) > 0,
where

Ω̃δ,k := {ω ∈ Ω :
√
k + 2 ΘC

λ(Xk(ω))2 ≥ δ }.

Hence, we have

P

ω ∈ Ω

∣∣∣∣∣∣
∑
k≥k̄

ΘC
λ(Xk(ω))2√

k + 2 log(k + 2)
≥
∑
k≥k̄

δ

(k + 2) log(k + 2)


 ≥ P

⋂
k≥k̄

Ω̃δ,k

 > 0.

Note that
∑

k≥k̄
1

(k+2) log(k+2) ≥
∫∞
k̄+3

du
u log u = ∞. This means the above inequality is contradicting

to P(Ω1) = 1 where Ω1 :=
{
ω ∈ Ω :

∑
k γkΘC

λ(Xk(ω))2 < ∞
}

, which has been appeared inside the
proof of Theorem 4.11.

5 Conclusion

In this paper, we proposed a new coordinate-type algorithm RSSM for solving nonsmooth weakly
convex optimization problems over high-dimensional Stiefel manifolds. The main idea of RSSM is
that at each iteration, it decomposes the Stiefel manifold into submanifold blocks and performs
a retracted partial Riemannian subgradient step with respect to a randomly selected submanifold
block. RSSM enjoys a low per-iteration cost and especially suitable for high-dimensional applications.
Furthermore, we showed that RSSM converges to the set of stationary points at a sublinearly rate.
To the best of our knowledge, RSSM is the first feasible, coordinate-type algorithm for nonsmooth
weakly convex optimization over Stiefel manifolds.
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A Some Technical Lemmas

Lemma A.1. Let X ∈ St(n, p) and C be a partition of [p] with ℓ := |C| ≥ 2. For every ξ ∈ Rn×p,
we have

PTXSt(n,p) ◦ AX(ξ) = AX ◦ PTXSt(n,p)(ξ) = 1
ℓ−1

∑
(i,j):i<j

PTXij
MX−ij

(ξij)I
⊤
ij , (34)

PTXij
MX−ij

(AX(ξ)Iij) I
⊤
ij = AX

(
PTXij

MX−ij
(ξij)I

⊤
ij

)
. (35)

Proof. For every ξ ∈ Rn×p, direct computation gives

AX

(
PTXSt(n,p)(ξ)

)
= 1

ℓ−1

∑
(i,j):i<j

(I −X−ijX
⊤
−ij)

(
X skew(X⊤ξ) + (I −XX⊤)ξ

)
IijI

⊤
ij

= 1
ℓ−1

∑
(i,j):i<j

(
XijI

⊤
ij skew(X⊤ξ)Iij + (I −XX⊤)ξij

)
I⊤ij

= 1
ℓ−1

∑
(i,j):i<j

PTXij
MX−ij

(ξij)I
⊤
ij .

Besides, since AX(ξ) = X
(

1
ℓ−1Q⊡ (X⊤ξ)

)
+ (I −XX⊤)ξ, we have

PTXSt(n,p) (AX(ξ)) = X skew
(

1
ℓ−1Q⊡ (X⊤ξ)

)
+ (I −XX⊤)ξ

= X
(

1
ℓ−1Q⊡ skew(X⊤ξ)

)
+ (I −XX⊤)ξ = AX ◦ PTXSt(n,p)(ξ),

i.e., PTXSt(n,p) ◦ AX(ξ) = AX ◦ PTXSt(n,p)(ξ) and result (34) follows. Furthermore,

PTXij
MX−ij

(AX(ξ)Iij) I
⊤
ij = PTXij

MX−ij

((
X
(

1
ℓ−1 Q⊡ (X⊤ξ)

)
+ X⊥(X⊤

⊥ξ)
)
Iij

)
I⊤ij

= X
(

1
ℓ−1Q⊡ (Iijskew(X⊤

ij ξij)I
⊤
ij )
)

+ (I −XX⊤)ξijI
⊤
ij ,

AX

(
PTXij

MX−ij
(ξij)I

⊤
ij

)
= AX

(
X(Iijskew(X⊤

ij ξij)I
⊤
ij ) + X⊥(X⊤

⊥ξijI
⊤
ij )
)

= X
(

1
ℓ−1Q⊡ (Iijskew(X⊤

ij ξij)I
⊤
ij )
)

+ (I −XX⊤)ξijI
⊤
ij ,

i.e., result (35) is shown.

Lemma A.2. Let X ∈ St(n, p) and C be a partition of [p] with ℓ := |C| ≥ 2. The scaling operator AX

is self-adjoint and has eigenvalues 1 and 1
ℓ−1 with multiplicities (n− p)p+

∑ℓ
i=1 p

2
i and p2−

∑ℓ
i=1 p

2
i

respectively.

Proof. Let X ∈ St(n, p). Fix any X⊥ such that [X X⊥] ∈ O(n). Use adaptive coordinate represen-
tation associated to X, for any ξ, η ∈ Rn×p,

⟨AX(ξ), η ⟩ =
〈
X
(

1
ℓ−1 Q⊡ (X⊤ξ)

)
+ X⊥(X⊤

⊥ξ), X(X⊤η) + X⊥(X⊤
⊥η)

〉
=
〈

1
ℓ−1 Q⊡ (X⊤ξ), X⊤η

〉
+
〈
X⊤

⊥ξ,X⊤
⊥η
〉

=
〈
X⊤ξ, 1

ℓ−1 Q⊡ (X⊤η)
〉

+
〈
X⊤

⊥ξ,X⊤
⊥η
〉

= ⟨ ξ,AX(η) ⟩,
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i.e., AX is self-adjoint. In addition, in terms of adaptive coordinate representation, the following
subspaces X

A11 0 ··· 0
0 A22 0
...

. . .
...

0 0 ··· Aℓℓ

+ X⊥B : Aii ∈ Rpi×pi , B ∈ R(n−p)×p

 , (36)

X

 0 A12 ··· A1ℓ
A21 0 A2ℓ

...
. . .

...
Aℓ1 Aℓ2 ··· 0

 : Aij ∈ Rpi×pj

 (37)

are the eigenspaces of AX with respect to eigenvalues 1 and 1
ℓ−1 respectively.

Lemma A.3. Let X,Y ∈ St(n, p). For any ξ ∈ Rn×p, we have

A−1
Y (ξ) −A−1

X (ξ) = (ℓ− 2)
{
Y
[
(J − I) ⊡ (Y ⊤ξ)

]
−X

[
(J − I) ⊡ (X⊤ξ)

] }
, (38)

where I ∈ Rℓ×ℓ is the identity matrix, J ∈ Rℓ×ℓ is the matrix with all entries equal to 1.

Proof. Let Q−1 denote the entrywise reciprocal of the signless graph Laplacian matrix Q. For any
ξ ∈ Rn×p, by definition of A−1

X , we have

A−1
Y (ξ) −A−1

X (ξ)

= Y
(
(ℓ− 1)Q−1 ⊡ (Y ⊤ξ)

)
+ (I − Y Y ⊤)ξ −X

(
(ℓ− 1)Q−1 ⊡ (X⊤ξ)

)
− (I −XX⊤)ξ

= Y
(
(ℓ− 1)Q−1 ⊡ (Y ⊤ξ)

)
− Y (Y ⊤ξ) −X

(
(ℓ− 1)Q−1 ⊡ (X⊤ξ)

)
+ X(X⊤ξ)

= Y
[(

(ℓ− 1)Q−1 − J
)
⊡ (Y ⊤ξ)

]
−X

[(
(ℓ− 1)Q−1 − J

)
⊡ (X⊤ξ)

]
= (ℓ− 2)

{
Y
[
(J − I) ⊡ (Y ⊤ξ)

]
−X

[
(J − I) ⊡ (X⊤ξ)

] }
,

i.e., (38) is shown.

Lemma A.4. Let X ∈ St(n, p) and C be a partition of [p] with ℓ := |C| ≥ 2. Suppose X+ ∈ St(n, p)
such that X+

ij := PMX−ij
(Xij − γ∇̃ijf(X)) and X+

−ij := X−ij with a given {i, j} ∈
(
[ℓ]
2

)
. Then, for

any ξ, ζ ∈ St(n, p), we have∣∣∣∣(∥ξ∥2A−1

X+

− ∥ξ∥2A−1
X

)
−
(
∥ζ∥2A−1

X+

− ∥ζ∥2A−1
X

)∣∣∣∣ ≤ √
2 (ℓ− 2) ∥X+ −X∥ ∥ ξ − ζ ∥ . (39)

Proof. By (38) in Lemma A.3, and from (24) and ΨX(ξ) := X
[
(J − I) ⊡ (X⊤ξ)

]
, we have(

∥ξ∥2A−1

X+

− ∥ξ∥2A−1
X

)
−
(
∥ζ∥2A−1

X+

− ∥ζ∥2A−1
X

)
= (ℓ− 2) (⟨ (ΨX+ − ΨX)(ξ), ξ ⟩ − ⟨ (ΨX+ − ΨX)(ζ), ζ ⟩)

= (ℓ− 2)
(
⟨ (X+

i X+
i
⊤ −XiX

⊤
i )ξ−iI

⊤
−i + (X+

j X+
j
⊤ −XjX

⊤
j )ξ−jI

⊤
−j , ξ ⟩

− ⟨ (X+
i X+

i
⊤ −XiX

⊤
i )ζ−iI

⊤
−i + (X+

j X+
j
⊤ −XjX

⊤
j )ζ−jI

⊤
−j , ζ ⟩

)
= (ℓ− 2)

(
⟨X+

i X+
i
⊤ −XiX

⊤
i , ξ−iξ

⊤
−i − ζ−iζ

⊤
−i ⟩ + ⟨X+

j X+
j
⊤ −XjX

⊤
j , ξ−jξ

⊤
−j − ζ−jζ

⊤
−j ⟩
)

≤ (ℓ− 2)
(
∥X+

i X+
i
⊤ −XiX

⊤
i ∥op∥ξ−iξ

⊤
−i − ζ−iζ

⊤
−i∥ + ∥X+

j X+
j
⊤ −XjX

⊤
j ∥op∥ξ−jξ

⊤
−j − ζ−jζ

⊤
−j∥
)

= (ℓ− 2)
(
∥(I −XiX

⊤
i )X+

i ∥op∥(I − ζ−iζ
⊤
−i)ξ−i∥ + ∥(I −XjX

⊤
j )X+

j ∥op∥(I − ζ−jζ
⊤
−j)ξ−j∥

)
≤ (ℓ− 2)

(
∥X+

i −Xi∥op∥ξ−i − ζ−i∥ + ∥X+
j −Xj∥op∥ξ−j − ζ−j∥

)
≤

√
2 (ℓ− 2)∥X+

ij −Xij∥∥ ξ − ζ ∥,

where the fourth equality is guaranteed by Lemma 4.4. Thus, (39) follows.
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