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Abstract
The problem of phase retrieval is revisited and studied from a fresh perspective. In
particular, we establish a connection between the phase retrieval problem and the sen-
sor network localization problem, which allows us to utilize the vast theoretical and
algorithmic literature on the latter to tackle the former. Leveraging this connection,
we develop a two-stage algorithm for phase retrieval that can provably recover the
desired signal. In both sparse and dense settings, our proposed algorithm improves
upon prior approaches simultaneously in the number of required measurements for
recovery and the reconstruction time. We present numerical results to corroborate
our theory and to demonstrate the efficiency of the proposed algorithm. As a side
result, we propose a new form of phase retrieval problem and connect it to the
complex rigidity theory proposed by Gortler and Thurston (in: Connelly R, Ivic
Weiss A, Whiteley W (eds) Rigidity and symmetry, Springer, New York,
pp 131–154, 2014).
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1 Introduction

1.1 Phase Retrieval Problem

The problem of phase retrieval consists of recovering a signal vector x ∈ C
n from

phaseless intensity measurements of the form

|〈x, φm〉|2 = bm, m = 1, 2, · · · , M, (1.1)

where for each m = 1, · · · , M , bm ∈ R+ is the observed output of the intensity
measurement associated with a given measurement vector φm ∈ C

n . A collection
Φ = {φm}Mm=1 of measurement vectors is called an ensemble. Throughout the paper,
we focus on the setting where we can freely design these measurement vectors Φ.
However, our approach does extend to a practical, common setting in optics (see
Sect. 3.2.1). As we will see, the design of the ensemble Φ is of utmost importance
to the recovery procedure. Note that for any unit-modulus complex number eiθ , the
vector eiθ x yields the same measurements. Therefore, we could recover the signal x
only up to the equivalence relation ∼ given by

x ∼ y if and only if y = eiθ x for some θ ∈ R.

Let Cn/ ∼ be the set of equivalence classes induced by the equivalence relation ∼
and denote by AΦ : Cn/ ∼→ R+ the intensity map associated with the ensemble
Φ = {φm}Mm=1, i.e.,

(AΦ(x))m = |〈x, φm〉|2, m = 1, · · · , M . (1.2)

For simplicity, we will writeA in place ofAΦ when the ensemble Φ is clear from the
context.

The phase retrieval problem has a long history and received great attention due
to its vast modeling power in many areas. Fields of applications include X-ray and
crystallography imaging [1], quantum optics [2], astronomy [3], acoustics [4], and
microscopy [5]. For more discussions on the history, applications, and recent devel-
opments of phase retrieval, we refer the readers to the excellent surveys [6,7].

1.2 RelatedWork

Over the past few decades, the phase retrieval problem has been extensively stud-
ied in the literature. A popular approach in practice is to use the so-called error
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reduction-type algorithms. Algorithms that fall into this class, including the famous
Gerchberg-Saxton algorithm [8] and the Fienup algorithm [3,9,10], are essentially
alternating projection-type algorithms [6]. The advantage of this approach is its rela-
tively low computational complexity and flexibility in incorporating prior knowledge
of the signal into the recovery process. Unfortunately, this approach often lacks prov-
able convergence guarantees and suffers from the issues of multiple stationary points
and instability, especially with non-convex priors [6]. Another weakness is that the
number of measurements required when using these algorithms is not known a priori,
though some efforts to remedy this have been made in [11]. In particular, Netrapalli et
al. [11] studied a version of the alternating projection method for the phase retrieval
problem. Their algorithm recovers the signal using O(n log3 n log 1

ε
) intensity mea-

surements and has computational complexity O(n2 log n(log2 n + log2 1
ε
log log 1

ε
)).

However, this is still far from explaining the empirical success of error reduction-type
algorithms and a rigorous mathematical foundation for this approach remains elusive.

Another recent approach is based on semidefinite programming and convex relax-
ation. The basic idea of this approach is to interpret quadratic measurements (1.1) as
linear measurements of a rank-one matrix X = xxH . Then, the phase retrieval prob-
lem can be equivalently rewritten as a rank-minimization problem. Subsequently, by
using a convex surrogate such as the trace norm to replace the rank function, we obtain
a semidefinite program that can be solved in polynomial-time by off-the-shelf solvers.
PhaseLift proposed by Candès et al. [12] and PhaseCut by Waldspurger et al. [13] are
examples of such an approach. The drawback of this approach is its high computational
complexity. Indeed, the complexities of PhaseLift and PhaseCut to return a solution
of ε accuracy are O( n

3

ε2
) and O( n3√

ε
), respectively. Both methods use an ensemble

of O(n log n) i.i.d. standard n-dimensional Gaussian random vectors. Assuming the
signal x is s-sparse (i.e., x has at most s non-zero components), the �1-regularized
version of PhaseLift [14] improves the number of required Gaussian measurements to
O(s2 log n). Nonetheless, this algorithm again requires solving a semidefinite program
and hence has a similar computational complexity as PhaseLift and PhaseCut. There-
fore, this approach is not applicable to large-scale phase retrieval problems in practice.

Other approaches usually involve construction of special matrices. In [15], Iwen et
al. constructed block circulant measurement matrices that can be block diagonalized.
By constructing certain invertible block circulant matrices, one can express the avail-
able squared magnitudes as a system of linear measurements, thereby recovering the
signal. The approach reduces computational complexity to O(n(log3 n log3(log n)));
whereas the ensemble size is still as large as O(n log2 n log3(log n)) to guarantee
unique recovery with high probability. In a recent work [16], a non-convex approach
based on Wirtinger flow was introduced to extract phase information from fewer ran-
dom measurements. The number of measurements and complexity of this algorithm
are both O(n log n). A graph-theoretic approach has been considered by Alexeev et
al. [17], where the recovery algorithm is inspired by results from spectral graph the-
ory and the measurement ensembles are designed based on expander graphs. In [18],
the authors studied the general compressive phase retrieval problem with sparsity s.
They developed a novel approach based on a sparse-graph coding framework and can
recover a random fraction of non-zero components with 14s measurements and com-
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plexity Θ(s). Nevertheless, their method is only capable of correctly recovering part
of the non-zero entries and they still require 4s − o(s) measurements.

There have also been endeavors to understand the minimum size of an ensemble so
that themeasurements uniquely determine the signal up to the equivalence relation, i.e.,
the intensity map A is injective. Towards that end, Bandeira et al. [19] conjectured
that 4n − 4 generic measurement vectors are both necessary and sufficient for the
injectivity of the intensity map and showed in the same paper that the conjecture is
true when n = 2 and n = 3. This conjecture is now known as the 4n − 4 conjecture.
The sufficiency was proved by Fickus et al. in [20]. One such ensemble consisting of
4n − 4 deterministic measurements was constructed in [21] via a low-rate sampling
method. Unfortunately, the necessary part of the conjecture is false—an ensemble Φ̂

of 11 vectors with 4-dimensional measurement whose intensity map A
Φ̂
is injective

was constructed in [22].

1.3 Our Approach andMain Contributions

Our work sets out with the interesting observation that the phase retrieval problem
can be seen as a sensor network localization problem. More precisely, each compo-
nent of the signal x can be viewed as a point (which we will refer to as sensors) in
d-dimensional Euclidean space, where d = 1 for real signals and d = 2 for complex
signals. If we explicitly design intensity measurements to form edges joining these
sensors, then determining x can be viewed as localizing the sensors in space. Fur-
thermore, if the underlying graph generated by these measurements satisfies certain
rigidity properties, then each entry of x can be uniquely determined up to the equiv-
alence relation. In this work, we will design a deterministic measurement ensemble
that fulfills the rigidity requirement and aim to construct an injective mapping with as
few measurements as possible.

Our contribution is threefold. First, we establish a connection between the phase
retrieval problem and the well-studied sensor network localization problem. This
allows us to use the tools from rigidity theory and graph realization to bear on the
phase retrieval problem. In particular, we propose a two-stage algorithm to uniquely
recover all phases up to the equivalence relation ∼ with few measurements. Con-
cretely, we design a deterministic ensemble such that the underlying graph generated
by intensity measurements is a d-lateration graph that is universally rigid. By rigidity
theory and relevant results in [23], we can easily obtain provable guarantee for unique
recovery. For the non-sparse phase retrieval problem, our proposed ensemble consists
of only 3n − 2 measurements and the corresponding intensity map is injective. For
the sparse case where there are at most s non-zero components, the number of mea-
surements is further reduced to n+2s−2. Injectivity of our mapping is demonstrated
by theoretical analysis. The algorithm is easy to implement and allows parallel com-
putation. Simulations further demonstrate its efficacy and superiority over benchmark
approaches in terms of efficiency. The computational complexity scales only linearly
with n. To the best of our knowledge, this is the first work to study the phase retrieval
problem by incorporating results from rigidity theory. Second, our ensemble design
yields an injective intensity map of minimal size, and we provide explicit constants for
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the number of measurements. Last but not least, we propose a new variant of the phase
retrieval problem and connect it to the complex rigidity theory proposed by Gortler
and Thurston [24].

It should be pointed out that our approach does not constitute a counter-example
to the necessary part of the 4n − 4 conjecture. In particular, the conjecture claims that
the ensemble of any injective intensity map is of size at least 4n − 4. The injectivity
is understood as a map on the whole Cn/∼, whereas our proposed algorithm provably
recovers the correct signal with an additional minor assumption on the true signal.
Nevertheless, as we will see in Sect. 3, our method fails only for those signals that
have its first two components collinear with the origin. We also remark that a different
ensemble of the same size appeared in an unpublished manuscript [25]. However, they
did not provide motivations and insights for their ensemble and the injectivity of the
corresponding intensity map is not clear.

1.4 Organization

The remainder of the paper is organized as follows: Sect. 2 is devoted to revisiting
the theory of sensor network localization and graph rigidity, which constitutes the
fundamental basis for our approach. Section 3 focuses on our novel approach to the
phase retrieval problem, including a rigidity-theoretic two-stage algorithmic frame-
work applied to the phase retrieval problem and a theoretical analysis to demonstrate
the injectivity of the measurement ensemble generated by our algorithm. We then
provide numerical results in Sect. 4 to validate our theoretical findings, where we
compare against three methods in the literature, namely the Fienup algorithm [10],
the Wirtinger flow algorithm [16], and PhaseCut [13]. In Sect. 5, we study the com-
plex rigidity theory and its connection to complex-measurement-based phase retrieval
problems. Finally, we conclude the paper in Sect. 6.

Throughout the paper, the vectors are column vectors unless specified otherwise; e j
denotes the j th standard coordinate basis vector of suitable dimension; (·)T and (·)H
denote the transpose and Hermitian transpose, respectively; 〈·, ·〉 refers to the inner
product of vectors; �(·) and 	(·) denote the real and imaginary parts of a complex
number or vector, respectively.

2 Sensor Network Localization

In this section, we review the sensor network localization problem and a graph
rigidity-theoretic approach to tackling it. Then, we present a novel connection between
the phase retrieval problem and the sensor network localization problem. Such a
connection allows us to utilize powerful results in rigidity theory to design the mea-
surement ensemble that yields a minimal-size injective intensity map.

2.1 Rigidity Theory and Sensor Network Localization

The problem of sensor network localization is among the classic topics in signal
processing and arises when one is interested in determining the positions of nodes in
a network from a set of measurements. We do not attempt to give a comprehensive
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review, but only highlight the crucial findings of the relationship between unique
localizability and graph rigidity theory.

To begin, let us give a formal definition of the sensor network localization problem.
Consider a network that consists of a number of anchor nodes whose positions are
known, togetherwith a number of sensor nodeswhose locations are to be estimated. Let
d be the dimension of theEuclidean space inwhich these nodes reside. LetG = (V , E)

be the given network, where V and E denote the vertex set and the edge set of the
graph, respectively. Without loss of generality, we assume that G is connected. The
vertices can be partitioned into two categories: the set Vs = {1, · · · , n} of sensors and
the set Va = {n + 1, · · · , n + m} of anchors. In particular, the positions of anchors
are given by the vector u ∈ R

dm . For the sake of clarity, we define three subsets of
E , namely Eaa , Esa , and Ess , which are defined as Eaa = {(i, j) ∈ E : i, j ∈ Va},
Esa = {(i, j) ∈ E : i ∈ Vs, j ∈ Va}, and Ess = {(i, j) ∈ E : i, j ∈ Vs}, respectively.
For (i, j) ∈ Eaa , the distances are trivially known; for (i, j) ∈ Esa or (i, j) ∈ Ess , the
distances are acquired by applyingmeasurements. The distances between the nodes are
represented by positive weights assigned to the edges, namely ri j for (i, j) ∈ Esa and
r̃i j for (i, j) ∈ Ess . For simplicity, we assume that all the measured data are noiseless.
Let r ∈ R

|Esa | and r̃ ∈ R
|Ess | be the collection of distance measurements. Then, an

instance of the sensor network localization problem is given by (G, (r , r̃), u, d). The
objective is to find a position assignment x ∈ R

nd to the sensor nodes such that the
following system is satisfied:

‖xi − x j‖2 = ri j , for (i, j) ∈ Esa;
‖xi − x j‖2 = r̃i j , for (i, j) ∈ Ess;

xi ∈ R
d , for i = 1, · · · , n.

Herein, the pair (x, u), which represents the positions of all nodes in space, is called a
localization ofG. One interesting question in this setup is whether andwhen the sensor
positions x can be uniquely determined. If an instance admits a unique localization in
R
d , we say that it is uniquely localizable. Eren et al. [26] utilized tools from rigidity

theory to discuss the connection between unique localizability and properties of the
associated network. In particular, they stated the following theorem.

Theorem 2.1 (Unique Localizability&Global Rigidity [26])For any d � 1, a generic
sensor network localization instance is uniquely localizable if and only if its associated
network G = (V , E) is globally rigid.

In graph theory, a graph G = (V , E) with p being its localization in R
n is called

globally rigid if p is the unique (up to congruence) localization of G in n-dimensional
Euclidean space. Nevertheless, it has been shown that even if an instance satisfies
the global rigidity property, the problem of estimating the positions is still intractable
in general [27]. To overcome the barrier, So and Ye introduced the notion of unique
d-localizability in [28], while Zhu et al. applied the notion of universal rigidity to
strengthen the connection [23]. In particular, a generic sensor network localization
instance is called uniquely d-localizable if it admits a unique localization in any
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Euclidean spacewith dimension � � d. A graphG = (V , E)with p being its localiza-
tion in Rn is called universally rigid if p is the unique (up to congruence) localization
of G in any Euclidean space. The connection between unique d-localizability and
universal rigidity is presented below. For a rigorous proof, readers can refer to [23,
Theorem 2].

Theorem 2.2 (Unique d-Localizability & Universal Rigidity [23]) For any d � 1, a
generic sensor network localization instance is uniquely d-localizable if and only if
its associated network G = (V , E) is universally rigid.

Although universal rigidity is more restrictive than global rigidity, it still captures
a host of networks. Examples of universally rigid graphs include complete graphs and
d-lateration graphs. The latter notion is defined as follows:

Definition 2.3 (d-lateration Graph [29]) Let d, n � 1 be integers with n � d + 1.
Then, an n-vertex graph G = (V , E) is called a d-lateration graph if there exists
an ordering {1, 2, · · · , n} of the vertices in V such that (i) the first d + 1 vertices
1, 2, · · · , d form a complete graph; (ii) every vertex j � d +1 is connected to at least
d + 1 of the vertices 1, 2, · · · , j − 1.

In particular, a sensor network localization instance is uniquely d-localizable if its
associated network is a d-lateration graph. The proof is given in [23, Theorem 3].
Next, we will apply this proposition to design the measurement ensemble for phase
retrieval.

2.2 Sensor Network Localization and Phase Retrieval

In this section, we consider the phase retrieval problem from a fresh perspective. In
particular, we look at the problem through the lens of the sensor network localization
problem. Concretely, each component of the signal x can be regarded as a sensor
in d-dimensional Euclidean space, where d = 1 for real signals and d = 2 for
complex signals, while the origin can be viewed as an anchor. Since we assume that the
measurement vectors can be designed freely, we restrict our attention to measurement
vectors of the forms

φk = ek (where 1 � k � n) and φ̃ jk = e j − ek (where 1 � j < k � n). (2.1)

The former yields the distance between sensor k and the origin (i.e., |xk |), while the
latter yields the distance between sensors j and k (i.e., |x j − xk |). Thus, by choosing
different subsets of measurement vectors from (2.1), we obtain different instances
of the sensor network localization problem. Now, consider an instance of the sensor
network localization problem constructed according to the above recipe and let G be
the underlying graph. Based on results in the previous section, ifG is universally rigid,
then the instance admits a unique localization in any Euclidean space. More precisely,
all sensors are uniquely determined up to congruence in space, which implies unique
recovery of the reconstructed signal x . We are thus motivated to construct an ensemble
with as few measurement vectors from (2.1) as possible, and yet the graph G induced
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by these measurements is universally rigid. We will discuss how this can be achieved
in the next section.

3 A Rigidity-Theoretic Approach to Phase Retrieval

Let x = (x1, · · · , xn) be the signal vector that we wish to recover. To implement
the idea in Sect. 2.2, we construct a graphG = (V , E), where the vertex set V is given
by V = {0, x1, · · · , xn} (here, we use xi to denote both the label of the vertex and its
location in space) and the edge set E is obtained using the following procedure, so
that G is a d-lateration graph (d = 1 if x is a real signal and d = 2 if x is a complex
signal).

1. Choose d + 1 nodes from V as anchors and form a complete graph.
2. Consider the remaining nodes as sensors. For each sensor node, construct d + 1

edges connecting the sensor to all the anchors.

Since G is universally rigid by construction, once the measurements corresponding to
the edges of G are available, the locations of the vertices are uniquely determined and
so is the target signal vector. We now propose a rigidity-theoretic two-stage algorithm
to actually recover the target signal vector. We will first illustrate the idea for real
signals and then extend it to complex ones.

3.1 Real Phase Retrieval

Consider the case where the signal x = (x1, · · · , xn) we wish to recover is real,
i.e., xi ∈ R for i = 1, · · · , n. In this case, we have d = 1. By Definition 2.3, two
anchors are required in order to construct the 1-lateration graph. As we can specify
the origin as an anchor, we only need to specify one more anchor. Towards that end,
we measure the magnitude of each entry of x , thereby creating an edge between the
origin and every other vertex. Let j1 be the smallest index such that |x j1 | = w > 0.
Note that x j1 can be placed at either w or −w. We fix the vertex x j1 at w and specify
it as an anchor. Next, we take the measurements |xi − x j1 | for all i �= j1 and |xi | �= 0,
thereby creating an edge between xi and x j1 . It is straightforward to verify from the
definition that the resulting graph is a 1-lateration graph and hence is universally rigid.
The target signal can then be recovered by simple calculations. The entire recovery
procedure is summarized in Algorithm 1.

Algorithm 1 Real Phase Retrieval

Step 1. Take the measurements w j = |〈e j , x〉|2 for j = 1, · · · , n.
Step 2. Determine the indices j1, · · · , js of the non-zero entries and the sparsity s.
Step 3. Fix x j1 at w j1 . Treat the origin and x j1 as two anchors.
Step 4. For k = 2, · · · , s, take the measurements w jk1 = |〈e jk − e j1 , x〉|2 and solve

for each x jk by

x jk = w j1 + w jk − w jk1

2x j1
.
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For the non-sparse case, we can recover the signal up to reflection using the fol-
lowing 2n − 1 deterministic measurements:

Φ = {ei }ni=1 ∪ {e j − e1}nj=2.

The size of our constructed ensemble coincides with the size that is necessary for
successful recovery in the real case; see [19, Theorem 4]. For the sparse case with
sparsity s (s � n), the deterministic ensemble

Φ = {ei }ni=1 ∪ {e jk − e j1}sk=2

yields an injective mapping with a size of n + s − 1. Remarkably, the computational
complexity ofAlgorithm1 is onlyΘ(n), which achieves the best orderwhen compared
with other methods in the literature.

3.2 Complex Phase Retrieval

Since complex signal reconstruction is more common in practice, we now aim
to extend Algorithm 1 to the complex case. Recall that our task is to recover an n-
dimensional complex signal from the measurements (1.1). With the sensor network
localization interpretation, complex phase retrieval amounts to localizing sensors on
the plane; hence, d = 2 in this case. Three anchors, including the origin, are required to
construct the 2-lateration graph. A natural idea is to try the following direct extension
of Algorithm 1.

Algorithm 2 yields a deterministic ensemble of small size and has a computational
complexity ofΘ(n). However,we encounter a non-uniqueness issuewhendetermining
the artificial anchors. Recall that x ∼ y if and only if y = eiθ x for some θ ∈ R. Let
∼w be the equivalence relation on C

n defined by x ∼w y if and only if y = eiθ x
or y = eiθ x̄ for some θ ∈ R. The equivalence relation ∼ captures isometry up to
rotation, whereas ∼w captures isometry up to rotation and reflection. One may easily
see that the artificial anchors can only achieve uniqueness up to rotation, but not both
rotation and reflection. Therefore, even if the map Aw

Φ : Cn/ ∼w→ R
M is injective,

the mapAΦ : Cn/ ∼→ R
M is not guaranteed to be injective. Such deficiency cannot

simply be resolved by adding more distance measurements.
To tackle this issue, we now introduce another two measurements. The additional

measurement vectors determine the relative phase between the two artificial anchors,

Algorithm 2 Complex Phase Retrieval (Preliminary Idea)

Step 1. Take the measurements w j = |〈e j , x〉|2 for j = 1, · · · , n.
Step 2. Determine the indices j1, · · · , js of the non-zero entries and the sparsity s.
Step 3. Treat x j1 , x j2 together with the origin as three anchors. Localize x j1 , x j2 by

another intensity measurement z1 = |〈e j1 − e j2 , x〉|2.
Step 4. For k = 3, · · · , s, take the measurements w jk1 = |〈e jk − e j1 , x〉|2, w jk2 =

|〈e jk − e j2 , x〉|2 and solve for each x jk .
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thus eliminating the reflection ambiguity. The refined procedure is given in Algo-
rithm 3. Our algorithm works under the following mild assumption.

Assumption 3.1 The first two non-zero entries of x are not collinear with 0.

Algorithm 3 Two-Stage Complex Phase Retrieval

Stage 1: Building Artificial Anchors (without Reflection Ambiguity)

Step 1. Take the measurements w j = |〈e j , x〉|2 for j = 1, · · · , n.
Step 2. Determine the indices j1, · · · , js of the non-zero entries and the sparsity s.
Step 3. Treat x j1 , x j2 together with the origin as three anchors. Localize x j1 , x j2 up

to rotation only by another two measurements z1 = |〈e j1 + e j2 , x〉|2 and
z2 = |〈e j1 − ie j2 , x〉|2.

Stage 2: Localizing the Sensors

Step 4. For k = 3, · · · , s, take the measurements w jk1 = |〈e jk − e j1 , x〉|2, w jk2 =
|〈e jk − e j2 , x〉|2 and solve the system (3.2) to recover x jk see the proof of
Lemma (3.4) on how this is done).

Note that the ensemble used in Algorithm 3 is

{e j }nj=1 ∪ {e1 + e2, e1 − ie2} ∪ {ek − e1}nk=3 ∪ {ek − e2}nk=3

for the non-sparse case, and is

{e j }nj=1 ∪ {e j1 + e j2 , e j1 − ie j2} ∪ {e jk − e j1}sk=3 ∪ {e jk − e j2}sk=3

for the sparse case. The former has size 3n−2, while the latter has size n+2s−2. Next,
we will provide theoretical analysis to demonstrate the injectivity of our ensemble
design. The proof of Theorem 3.2 follows immediately from Lemmas 3.3 and 3.4.

Theorem 3.2 (Unique Recovery of Algorithm 3) Suppose that the first two non-zero
entries of x are not collinear with 0. Then, x can be exactly recovered by Algorithm 3
up to global phase, i.e., up to the equivalence relation ∼.

Lemma 3.3 (Stage 1 Correctness) Given the measurement ensemble Φ1 = {e j }nj=1 ∪
{e j1 + e j2 , e j1 − ie j2} in Stage 1, the artificial anchors x j1 and x j2 are uniquely
determined up to ∼.

Proof For simplicity, we assume that the first s entries x1, · · · , xs of x are non-zero
and the remaining entries are all zeros, i.e., jk = k for k = 1, · · · , s. Our aim in
this stage is to recover x1 and x2 up to a common phase shift. We achieve this by
considering the ensemble

Φ =
{
φ1 = e1, φ2 = e2, φ3 =

(
1
1

)
, φ4 =

(
1
−i

)}
.
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The advantage of using this ensemble is twofold. First, it allows us to easily establish
the injectivity of the induced intensity map AΦ : C

2/ ∼→ R
4. Second, with the

measurements given by this ensemble, the reconstruction of x1 and x2 is almost trivial.
To establish the injectivity ofAΦ , consider the so-called super-analysis operator AΦ :
H2 → R

4 given by (AH) j = 〈H , φ jφ
∗
j 〉 for j = 1, · · · , 4. It is easy to show

that

AH =

⎛
⎜⎜⎝

H11
H22

H11 + H22 + H12 + H21
H11 + H22 + i H12 − i H21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

H11
H22

H11 + H22 + 2�(H12)

H11 + H22 − 2	(H12)

⎞
⎟⎟⎠

and AH = 0 ∈ R
4 if and only if H is a zero matrix. Hence, AΦ is injective. In

particular, there is no matrix in the null space of AΦ that is of rank 1 or 2. By a
result of Bandeira et al. [19],AΦ is injective. To recover x1 and x2, note that we have
w1 = |x1|2, w2 = |x2|2, and

{
z1 = |x1 + x2|2 = |x1|2 + |x2|2 + 2�(x∗

1 x2),

z2 = |x1 + i x2|2 = |x1|2 + |x2|2 − 2	(x∗
1 x2).

Denoting x j = a j + ib j for j = 1, 2 and using the definition of w1 and w2, we
have

{
z1 = w1 + w2 + 2(a1a2 + b1b2),

z2 = w1 + w2 − 2(a1b2 − a2b1).

Without loss of generality, we can assume that x1 is a positive real, i.e., a1 > 0 and
b1 = 0. Thus, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1 = √
w1,

b1 = 0,

a2 = z1−w1−w2
2
√

w1
,

b2 = w1+w2−z2
2
√

w1
.

(3.1)

This proof is completed.

Lemma 3.4 (Stage 2 Correctness) Given the fixed anchors and the measurement
ensemble Φ2 = {e j }nj=1 ∪ {e jk − e j1}sk=3 ∪ {e jk − e j2}sk=3 in Stage 2, the locations of
the sensors {x jk }sk=3 are uniquely determined.

Proof Again,we assume that x1, · · · , xs are the non-zero entries of x and the remaining
entries are all zeros. Let x1 = a1 + ib1 and x2 = a2 + ib2 be the anchors obtained
in Stage 1 with a1, a2, b1, b2 defined by (3.1). Our goal is to uniquely determine
x3, · · · , xs . Towards that end, recall that for j = 3, · · · , s, we have the measurements
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⎧⎪⎨
⎪⎩

w j = |x j |2,
w j1 = |x j − x1|2,
w j2 = |x j − x2|2.

(3.2)

Denote x j = a j + ib j for j = 3, · · · , s. Then,

{
w j1 = w j + w1 − 2�(x∗

j x1) = w j + w1 − 2(a1a j + b1b j ),

w j2 = w j + w2 − 2�(x∗
j x2) = w j + w2 − 2(a2a j + b2b j ).

In particular, for each j , we have the following system of 2 equations in 2 unknowns:

{
a1a j + b1b j = 1

2 (w1 + w j − w j1),

a2a j + b2b j = 1
2 (w2 + w j − w j2).

(3.3)

By assumption, the three points 0, x1, and x2 are not collinear on R
2. Therefore, we

have b1/a1 �= b2/a2 ⇔ a1b2 − a2b1 �= 0 and thus the solution to (3.3) is unique
if it admits any solution at all. Since the true signal is feasible to this system, this
completes the proof of the correctness of Stage 2.

3.2.1 Remarks

As we have pointed out in the Introduction, our algorithm does not provide a
counter-example to the necessary part of the 4n − 4 conjecture since it requires an
extra assumption that the first two entries of the target signal are not collinear with the
origin. It is also worth noting that our method requires the least number of measure-
ments known to date for both the real and complex scenarios and is still guaranteed
to recover the target signal vector. Moreover, our method is extremely easy to imple-
ment.

In addition, we remark that although we focus on the setting where one can freely
choose the measurement ensemble, our approach does extend to a more practical,
common setup in optics. In particular, in the Fourier setting, by following the idea in
[30, Section 3], the data required by our approach can be obtained using the masking
technique in [16,18]. Specifically, let Dr be an n × n diagonal matrix corresponding
to the r th mask or modulated illumination; let fm be the conjugate of the mth column
of the n-point discrete Fourier transform (DFT) matrix. Then, the squared Fourier
magnitudes are given by

Z [m, r ] = |〈 fm, Dr x〉|2, for m = 0, 1, · · · , n − 1, r = 0, 1, · · · , R − 1,

where the r th column of Z corresponds to the squared magnitude of the n-point DFT
of the masked signal Dr x . Recall that the measurement ensemble in our approach is
given by {e j }nj=1 ∪ {e1 + e2, e1 − ie2} ∪ {ek − e1}nk=3 ∪ {ek − e2}nk=3. It is easy to
verify that by choosing suitable diagonal masks, our proposed measurements can be
obtained in the Fourier setting. For example, by introducing Di = diag(ei ) and setting
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m = 1, we have |〈 f1, Di x〉|2 = |xi |2 = |〈ei , x〉|2. If we let Di1 = diag(ei − e1), then
|〈 f1, Di1x〉|2 = |xi − x1|2 = |〈ei − e1, x〉|2.

4 Simulation Results

In this section, we provide numerical simulations to demonstrate the efficacy of our
proposed algorithm.We compare our approach against three algorithms: Fienup Algo-
rithm [10], Wirtinger Flow [16], and PhaseCut [13]. All simulations are implemented
using MATLAB R2017a (version: 9.2.0.538062) on a computer running Windows 10
with an Intel i5-6000 CPU (with four 3.30GHz processors) and 8 GB of main mem-
ory. The experimental setting is as follows. We uniformly sample n complex-valued
sensors within the square block [− 1

2 ,
1
2 ] + i[− 1

2 ,
1
2 ]. The number of measurements,

m, is set to be 3n − 2 for our approach, 6n for Fienup Algorithm, 4.5n for Wirtinger
Flow, and 4n for PhaseCut. The maximum number of iterations is set to be 2, 500 for
Fienup Algorithm, Wirtinger Flow, and PhaseCut. The step size of Fienup Algorithm
is set to be 0.5.

To investigate the effectiveness of our approach, we first compare the proba-
bility of successful recovery in the noiseless case. Specifically, we conduct the
simulations using different number of sensors, where n is specified in the set
{10, 50, 100, 150, 200, 250, 300, 350}. For each n, we use 100 realizations of the
sensors to obtain the figures. Figure 1 shows that both our approach and PhaseCut
can recover all sensors. This is due to the closed-form solution in our approach and
the refinement by using the Gerchberg-Saxton algorithm [8] in PhaseCut. By con-
trast, neither the Fienup Algorithm nor Wirtinger Flow can recover all sensors as they
require an initial guess of the unknown sensors.

In Fig. 2, we report the average reconstruction time of each algorithm. The plot
shows that our approach can recover the sensors substantially faster than other algo-

Fig. 1 Probability of successful recovery in noiseless environment
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Fig. 2 Reconstruction time in noiseless environment

rithms. This is again due to the closed-form solution in our approach. By contrast, other
algorithms need to recursively update the approximated solutions until convergence
or they terminate when the maximum number of iterations is reached. In particular,
PhaseCut applies the Gerchberg-Saxton algorithm [8] to refine the initial guess and lift
up the dimension of the variables. The reconstruction time thus increases dramatically
as the number of sensors increases. It is quite computationally expensive to reconstruct
sensors by PhaseCut, even though it achieves nice recovery performance.

In our experiments, we also test the robustness of our approach by adding noise to
the measurements. Concretely, the measurement vector b is of the form b = |A(x)|2+
ε(σ ), where ε(σ ) ∈ C

m is a complex Gaussian white noise with standard deviation
σ . The reconstruction error, δ, is measured by the relative �2-norm up to a complex
phase:

δ = min
θ∈R

‖x − eiθ x̂‖
‖x‖ .

We test the algorithms using different noise levels σ ∈ {0, 0.005, · · · , 0.050}, where
the number of sensors is set to be 100. For each σ , we again use 100 realizations of
the sensors. The probability of successful recovery and the relative errors in the noisy
environment are reported in Figs. 3 and 4, respectively. From the plots, we find that
our approach is less robust than other methods when the noise level exceeds 0.005.
The relative error of our approach is comparable with that of the Fienup Algorithm but
higher than the other two methods. The performance of our approach is not satisfac-
tory in the noisy environment, as our approach is combinatorial in nature and hence
the estimation error in each measurement tends to accumulate. A natural and inter-
esting future direction is to robustify our approach while retaining its computational
efficiency.
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Fig. 3 Probability of successful recovery in noisy environment

Fig. 4 Relative errors in noisy environment

5 Complex-Valued Phase Retrieval and Complex Rigidity Theory

In this section we will propose a new variant of the phase retrieval problem, which
we call the complex-valued phase retrieval (CVPR). We also discuss the connection
between CVPR and complex rigidity theory (CRT) [24].

5.1 Complex Rigidity Theory

We first briefly review the essential elements of complex rigidity theory. The def-
initions are taken from [24]. We equip the d-dimensional complex vector space C

d

with the complex-valued distance c(w, z) = ∑d
j=1(w j − z j )2, where w, z ∈ C

d .
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Note that the distance is a complex number in general. For a graph G = (V , E),
a configuration of its vertices in C

d is a map p : V → C
d . The pair (G, p) is

called a framework. Two frameworks (G, p) and (G, q) are said to be equivalent if
c(p(i), p( j)) = c(q(i), q( j)) for all (i, j) ∈ E . Two configurations p and q are said
to be congruent if c(p(i), p( j)) = c(q(i), q( j)) for all i, j ∈ V . A framework (G, p)
is said to be globally rigid if for any framework (G, q) equivalent to it, p and q are
congruent. A configuration p is said to be generic if its coordinates do not satisfy any
non-zero polynomial equation with rational coefficients (i.e., the coordinates of p are
algebraically independent), and (G, p) is called a generic framework. A graph G is
said to be generically globally rigid if all generic frameworks (G, p) are globally rigid.
It should be remarked that if we replace C by R above, then we are in the usual (real)
rigidity theory setting. The following result by Gortler and Thurston [13] shows that
when discussing the notion of generic global rigidity, there is no need to distinguish
between the real and complex settings.

Theorem 5.1 AgraphG is generically globally rigid inCd if andonly if it is generically
globally rigid in Rd .

For more discussions on CRT, readers are referred to [24].

5.2 Complex-Valued Phase Retrieval and Its Connection to Complex Rigidity
Theory

As pointed out in Sect. 3.2, the connection between the complex phase retrieval
problem and rigidity theory breaks down because they are concerned with different
notions of symmetry. In this section, we restore this connection via the complex-valued
intensity mapB, which bears an even stronger resemblance withA : Rn/{±1} → R

M

than A : Cn/ ∼→ R
M .

Let Φ = {φm}Mm=1 be a complex ensemble. Then, the map B = BΦ : Cn/{±1} →
C

M given by (B(x))m = 〈x, φm〉2 is called the complex-valued intensity map induced
by Φ. This map was first considered in [19, Lemma 6], where the authors showed
that the injectivity of A : Cn/ ∼→ R

M implies the injectivity of B. Note that this
map can be easily realized physically and hence might be of practical importance
[31,32]. Since each observation is a complex number, we call the recovery of x from
the measurement map B CVPR.

In the sequel, we will always consider graphs with vertex set V = {0, 1, · · · , n}
and measurement vectors from the set {ei }ni=1 ∪ {ei − e j }1�i< j�n . Every ensemble
Φ = {φm}Mm=1 ⊆ {ei }ni=1 ∪ {ei − e j }1�i< j�n from this set of measurement vectors
defines an edge set EΦ = E1,Φ ∪ E2,Φ on the vertex set V , where (i, 0) ∈ E1,Φ if
and only if ei ∈ Φ and (i, j) ∈ E2,Φ if and only if ei − e j ∈ Φ. This gives rise to a
graph GΦ = (V , EΦ). We will omit the subscript Φ from the above notations when it
causes no ambiguities. For any z ∈ C

n , we define the configuration of V induced by z
to be the map pz : V → C given by pz(i) = zi , where i = 1, · · · , n and pz(0) = 0.

Lemma 5.2 The following statements hold:

(i) A vector x ∈ C
n is generic if its induced configuration px is generic.
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(ii) If p is a generic configuration of V on C, then the vector x defined by xi =
p(i) − p(0) is generic.

Proof We first prove (i). Suppose that x is not generic. Then, there exists a non-zero
n-variate polynomial f with rational coefficients such that f (x) = 0. Consider the
(n+1)-variate polynomial f̂ defined by f̂ (z0, z1, · · · , zn) = z0 f (z1, · · · , zn). Then,
the vector z = (px (0), px (1), · · · , px (n)) satisfies f̂ (z) = 0. Since the coefficients
of f̂ are also rational, px is not generic.

Next, we prove (ii). Suppose that x is not generic. Then, there exists a non-zero n-
variate polynomial f with rational coefficients such that f (p(1) − p(0), · · · , p(n) −
p(0)) = 0. Consider one term c

∏n
j=1 (p( j) − p(0))r j in this polynomial, where

c ∈ Q\{0}, r j ∈ Z≥0, and j = 1, · · · , n. It is easy to see that each such term
is a non-zero polynomial in p(0), p(1), · · · , p(n) with rational coefficients. Since
f �≡ 0, there exists at least one such term. Moveover, a sum of terms of this form
is again a non-zero polynomial in p(0), p(1), · · · , p(n) with rational coefficients.
Hence, p(0), p(1), · · · , p(n) are algebraically dependent and thus p is not generic.

The following theorem establishes the connection between CVPR and CRT.

Theorem 5.3 For any ensemble Φ, B is injective if and only if (G, p) is globally rigid
for any configuration p, where G = GΦ = (V , EΦ) is defined above.

Proof Suppose that B is injective, i.e., B(x) = B(y) implies that x = ± y. Let
(G, p) and (G, q) be two equivalent frameworks. By definition, c(p(i), p( j)) =
c(q(i), q( j)) for all (i, j) ∈ E . Define x, y ∈ C

n by xi = p(i) − p(0) and yi =
q(i) − q(0) for i = 1, · · · , n. Then, for any (i, 0) ∈ E1,

〈ei , x〉2 = x2i = (p(i) − p(0))2 = c(p(i), p(0))

= c(q(i), q(0)) = (q(i) − q(0))2 = y2i = 〈ei , y〉2,

and for any (i, j) ∈ E2,

〈ei − e j , x〉2 = (xi − x j )
2 = (p(i) − p( j))2 = c(p(i), p( j))

= c(q(i), q( j)) = (q(i) − q( j))2 = (yi − y j )
2 = 〈ei − e j , y〉2.

This is exactly B(x) = B(y). Hence, x = ± y and

{
x2i = y2i , i = 1, · · · , n,

(xi − x j )2 = (yi − y j )2, i, j = 1, · · · , n.
(5.1)

Thus, we have c(p(i), p( j)) = c(q(i), q( j)) for all (i, j) ∈ V and p is congruent to
q.

Now, suppose that (G, p) is globally rigid for any configuration p. Let x, y ∈ C
n

be such thatB(x) = B(y), i.e., 〈x, φm〉2 = 〈y, φm〉2 form = 1, · · · , M . By the choice
of {φm}Mm=1,
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{
〈ei , x〉2 = 〈ei , y〉2, i = 1, · · · , n,

〈ei − e j , x〉2 = 〈ei − e j , y〉2, i, j = 1, · · · , n,

⇐⇒
{
c(xi , 0) = c(yi , 0), (i, 0) ∈ E1,

c(xi , x j ) = c(yi , y j ), (i, j) ∈ E2.

Therefore, c(px (i), px ( j)) = c(py(i), py( j)) for all (i, j) ∈ E , i.e., (G, px ) and
(G, py) are equivalent. By the supposition, they are also both globally rigid and hence
px and py are congruent. In particular, we have c(px (i), px ( j)) = c(py(i), py( j))
for all i, j = 1, · · · , n and the system (5.1) is satisfied. From the first equation of
(5.1), we know that xi = 0 if and only if yi = 0. For xi , x j �= 0, we have yi , y j �= 0
and xi/yi = x j/y j . Thus, xi/yi is a complex constant reiψ for those non-zero entries.
Again from the first equation of (5.1), we know that r = 1 and 2ψ = 0 mod 2π
since arg(x2i ) = arg(y2i ). Thus, ψ = 0 or ψ = π and x = ± y.

We say that a point [x] ∈ C
n/{± 1} is generic if x is generic. Since x is generic

if and only if −x is generic, the above notion is well defined. The following theorem
should be compared with [33, Theorem 2.9 and Theorem 3.4]; see also [20, Section
3].

Theorem 5.4 If B is injective on the set of generic points [x] ∈ C
n/{± 1} (i.e., for any

generic x,B−1 (B(x)) is the singleton [x] = {± x} ∈ C
n/{± 1}), then G is generically

globally rigid on C, and hence also on R.

Proof Combining Theorem 5.3, Lemma 5.2(ii), and Theorem 5.1, the result follows
immediately.

6 Conclusion

In this paper, we studied the phase retrieval problem from a fresh perspective and
connected it to the well-studied problem of sensor network localization. Based on this
connection, we develop a rigidity-theoretic two-stage algorithm for phase retrieval
that provably recovers the true signal using only 3n − 2 intensity measurements.
Besides, our algorithm is efficient (its computational complexity is Θ(n)) and easy
to implement. Finally, we proposed a new variant of the phase retrieval problem and
discuss its connection to complex rigidity theory. Adapting our approach to Fourier
settings and extending our algorithm to the noisy case are definitely important topics
for future research.
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