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Abstract. The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the

eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying

shrinkage transformation is either chosen heuristically—without compelling theoretical justification—or op-

timally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to

construct covariance estimators without imposing restrictive assumptions. That is, we study distributionally

robust covariance estimation problems that minimize the worst-case Frobenius error with respect to all data

distributions close to a nominal distribution, where the proximity of distributions is measured via a divergence

on the space of covariance matrices. We identify mild conditions on this divergence under which the resulting

minimizers represent shrinkage estimators. We show that the corresponding shrinkage transformations are

intimately related to the geometrical properties of the underlying divergence. We also prove that our robust

estimators are efficiently computable and asymptotically consistent and that they enjoy finite-sample perfor-

mance guarantees. We exemplify our general methodology by synthesizing explicit estimators induced by the

Kullback-Leibler, Fisher-Rao, and Wasserstein divergences. Numerical experiments based on synthetic and

real data show that our robust estimators are competitive with state-of-the-art estimators.

1. Introduction

The covariance matrix Σ0 of a random vector ξ ∈ Rp is a fundamental summary statistic that captures

the dispersion of ξ. Together with the mean vector µ0, it characterizes a unique member of the family of

Gaussian distributions, which occupies the central stage in statistics and probability theory. Hence, any

probabilistic model involving Gaussian distributions requires an estimate of Σ0 as an input. For example,

Gaussian distributions are ubiquitous in finance (e.g., in portfolio theory [41]), in statistical learning (e.g.,

in linear and quadratic discriminant analysis [20, § 4.3]) or control and signal processing (e.g., in Kalman

filtering [25]). In addition, Σ0 is intimately related to the correlation matrix, including the Pearson correlation

coefficients [48], and it permeates medical statistics [60] and correlation network analysis [13, 40] etc.

If the distribution P of ξ is known, then the mean vector µ0 = EP[ξ] and the covariance matrix Σ0 =

EP[(ξ−µ0)(ξ−µ0)
⊤] can be obtained by evaluating the relevant integrals with respect to P—either analytically

or via numerical integration quadratures. If P is unknown, however, one typically has to estimate µ0 and Σ0

from n independent samples ξ̂1, . . . , ξ̂n ∼ P. Arguably the simplest estimators for µ0 and Σ0 are the sample

mean µ̂SA = 1
n

∑n
i=1 ξ̂i and the sample covariance matrix Σ̂SA = 1

n−1

∑n
i=1(ξ̂i− µ̂SA)(ξ̂i− µ̂SA)

⊤, respectively.

An elementary calculation shows that Σ̂SA is unbiased. Up to scaling, Σ̂SA further coincides with the maximum

likelihood estimator for Σ0 provided that P constitutes a normal distribution. In 1975, much to the surprise

of statisticians, Charles Stein showed that one can strictly reduce the mean squared error of Σ̂SA by shrinking

it towards a constant matrix independent of the data [23, 57]. Even though it improves the mean squared

error, Stein’s shrinkage transformation suffers from two major shortcomings, that is, it may alter the order

of the estimator’s eigenvalues and may even render some eigenvalues negative [51]. Nonetheless, since Stein’s

surprising discovery, the study of shrinkage estimators embodies an important research area in statistics.
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Note also that Σ̂SA is ill-conditioned if p ≲ n and even singular if p > n [63]. Indeed, as Σ̂SA is unbiased and

as the maximum eigenvalue function is convex on the space of symmetric matrices, Jensen’s inequality ensures

that the largest eigenvalue of Σ̂SA exceeds, in expectation, the largest eigenvalue of Σ0. Similarly, the smallest

eigenvalue of Σ̂SA undershoots, in expectation, the smallest eigenvalue of Σ0. Hence, the condition number

of Σ̂SA, defined as the ratio of its largest to its smallest eigenvalue, tends to exceed the condition number

of Σ0. This effect is most pronounced if Σ0 is (approximately) proportional to the identity matrix Ip and is

exacerbated with increasing dimension p. A simple and effective method to improve the condition number

is to construct a linear shrinkage estimator by forming a convex combination of Σ̂SA and a data-insensitive

shrinkage target such as 1
p Tr[Σ̂SA]Ip [32]. Other popular shrinkage targets include the constant correlation

model [31], that is, a modified sample covariance matrix under which all pairwise correlations are equalized,

the single index model [30], that is, the sum of a rank-one and a diagonal matrix representing systematic and

idiosyncratic risk factors as in Sharpe’s single index model [56], and the diagonal matrix model [61], that is,

the diagonal matrix that contains all sample eigenvalues on its main diagonal. The shrinkage weight of Σ̂SA is

usually tuned to minimize the Frobenius risk, that is, the expected squared Frobenius norm distance between

the estimator and Σ0. Linear shrinkage estimators can be computed highly efficiently, improve the condition

number of the sample covariance matrix, and are guaranteed to have full rank even if p > n.

In the remainder of the paper, we focus on covariance estimators that depend on the samples only indirectly

through the sample covariance matrix. This assumption is unrestrictive. Indeed, it is satisfied by all commonly

used covariance estimators. Moreover, it comes at no loss of generality if P is a normal distribution, in which

case Σ̂SA constitutes a sufficient statistic for Σ0. Without prior information about the eigenvectors of Σ0, it is

natural to restrict attention to rotation equivariant estimators. Rotation equivariance means that evaluating

the estimator Σ̂ on the rotated dataset {Rξ̂i}NI=1 is equivalent to evaluating the rotated estimatorRΣ̂R⊤ on the

the original dataset {ξ̂i}ni=1 for any rotation matrix R. One can show that any rotation equivariant estimator Σ̂

commutes with the sample covariance matrix Σ̂SA, that is, Σ̂SA and Σ̂ share the same eigenvectors, and the

spectrum of Σ̂ can be viewed as a transformation of the spectrum of Σ̂SA[49, Lemma 5.3]. Such spectral

transformations are referred to as a shrinkage transformations. Note that the linear shrinkage estimators

discussed above are rotation equivariant only if the shrinkage target commutes with Σ̂SA.

If P is governed by a spiked covariance model, that is, if P is Gaussian, p and n tend to infinity at an

asymptotically constant ratio and Σ0 constitutes a fixed-rank perturbation of the identity matrix, then one can

use results from random matrix theory to construct the best rotation equivariant estimators in closed form for

a broad range of different loss functions [12]. Nonlinear shrinkage estimators that are asymptotically optimal

with respect to the Frobenius loss can also be constructed in the absence of any normality assumptions, and

they can significantly improve on linear shrinkage estimators if the eigenvalue spectrum of Σ0 is dispersed [33,

35]. Similarly, one can construct optimal shrinkage estimators for the inverse covariance matrix Σ−1
0 , which is

usually termed the precision matrix; see [8, 36]. However, the available statistical guarantees for all shrinkage

estimators described above are asymptotic and depend on assumptions about the structure of P and/or the

convergence properties of the spectral distribution of Σ̂SA, which may be difficult to check in practice.

In this paper, we propose a flexible and principled approach to estimate the covariance matrix Σ0 by using

ideas from distributionally robust optimization (DRO). Specifically, our approach generates a rich family of

covariance matrix estimators corresponding to different ambiguity sets that can encode prior distributional

information. All emerging estimators are rotation equivariant and thus represent nonlinear shrinkage estima-

tors. In addition, they all improve the condition number of the sample covariance matrix, are invertible, and

preserve the order of the sample eigenvalues. They also offer finite sample guarantees on the prediction loss

and are asymptotically consistent. These appealing properties are not enforced ad hoc but emerge naturally

from the solution of a principled distributionally robust estimation model. We emphasize that our results

do not rely on any restrictive assumptions such as the requirement that P is Gaussian or that the spectral

distribution of Σ̂SA converges to a well-defined limit as p and n tend to infinity at a constant ratio.
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To develop the distributionally robust estimation model to be studied in this paper, we first express the

unknown true covariance matrix Σ0 as the minimizer of a stochastic optimization problem involving the

unknown probability distribution P. Specifically, adopting the standard assumption that µ0 = EP[ξ] = 0

[32, 33, 34, 36] and noting that the squared Frobenius norm is strictly convex, we obtain

{Σ0} = Argmin
X∈Sp+

∥X − Σ0∥2F = Argmin
X∈Sp+

Tr[X2]− 2Tr[XΣ0] = Argmin
X∈Sp+

Tr[X2]− 2Tr[XEP[ξξ
⊤]].

If we could solve the stochastic optimization problem on the right-hand side of the above expression, we could

precisely recover the ideal estimator X⋆ = Σ0. This is impossible, however, because the distribution P needed

to evaluate the stochastic optimization problem’s objective function is unknown. Nevertheless, replacing P
with a nominal distribution P̂ constructed from the n training samples yields the nominal estimation model

min
X∈Sp+

Tr[X2]− 2EP̂
[
ξ⊤Xξ

]
, (1)

which requires no unavailable inputs. An elementary calculation shows that (1) is uniquely solved by Σ̂ =

EP̂[ξξ
⊤], which is the covariance matrix of ξ under the nominal distribution P̂, provided that µ̂ = EP̂[ξ] = 0.

Of course, characterizing Σ̂ as a minimizer of (1) has no conceptual or computational benefits because we have

to compute the integral EP̂[ξξ
⊤] already to evaluate the objective function of (1). Nevertheless, the nominal

estimation problem (1) is useful because it allows us to construct a broad range of nonlinear shrinkage

estimators in a principled and systematic manner by robustifying the prediction loss.

Any nominal distribution P̂ constructed from a finite dataset must invariably differ from the true data-

generating distribution P. Estimation errors in P̂ are conveniently captured by an ambiguity set of the form

Uε(P̂) =
¶
Q : Q ∼ (0,Σ), D(Σ, Σ̂) ≤ ε

©
, (2)

where Q ∼ (0,Σ) indicates that ξ has mean 0 and covariance matrix Σ under Q, and D represents a divergence

on the space of positive semidefinite matrices. Divergences are general distance-like functions that are non-

negative and satisfy the identity of indiscernibles (that is, they satisfy D(Σ, Σ̂) = 0 if and only if Σ = Σ̂).

However, divergences may fail to be symmetric and may violate the triangle inequality. Intuitively, Uε(P̂) can
be viewed as a divergence ball of radius ε ≥ 0 around P̂ in the space of probability distributions. Robustifying

the nominal estimation problem (1) against all distributions in Uε(P̂) yields the following DRO problem.

min
X∈Sp+

sup
Q∈Uε(P̂)

Tr[X2]− 2EQ
[
ξ⊤Xξ

]
(3)

Problem (3) seeks an estimator X that minimizes the worst-case expected prediction loss across all distribu-

tions in Uε(P̂). Note that if ε = 0, then the DRO problem (3) collapses to the nominal estimation problem (1)

because the divergence D satisfies the identity of indiscernibles, which ensures that U0(P̂) = {P̂}. Hence, (3)

embeds (1) into a family of estimation models parametrized by D and ε. Moreover, DRO models naturally

bridge optimization and statistics in that they offer an intuitive way to derive generalization bounds. Indeed,

if ε is tuned to ensure that Uε(P̂) contains the data-generating distribution P with high confidence 1 − β,

then the optimal value of the DRO problem (3) provides a (1− β)-upper confidence bound on the prediction

loss of its unique minimizer X⋆ under P [42]. Stronger generalization bounds that do not require P to belong

to Uε(P̂) are provided in [7, 15]. Even if the ambiguity set does not contain P, DRO models tend to yield high-

quality solutions because there is a deep connection between robustification and regularization [16, 53, 54].

This connection may also explain the empirical success of DRO in statistical estimation [6, 27, 59].

The flexibility to choose the divergence D underlying the ambiguity set Uε(P̂) is both a blessing and a

curse. On the one hand, D can encode prior distributional information and thus lead to better estimators.

On the other hand, the family of divergences is vast. Hence, the choice of a suitable instance could overwhelm

the modeler. Given the statistical estimation task at hand, it makes sense to restrict attention to diver-

gences that admit a statistical interpretation. Many popular divergences on the space of covariance matrices

are obtained by restricting a divergence on the space of probability distributions to the family of normal

distributions. For example, the Kullback-Leibler divergence, the 2-Wasserstein distance, or the Fisher-Rao
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distance between zero-mean normal distributions all admit closed-form formulas in terms of the distributions’

covariance matrices. These ‘Gaussian’ divergences are popular because they are conducive to tractable DRO

models in risk management [17, 44], ethical machine learning [10, 66], likelihood evaluation [46, 47], Kalman

filtering [71, 55] and control [58] etc. In addition, the shrinkage estimator for the inverse covariance matrix

proposed in [43] also leverages a ‘Gaussian’ divergence. Nonetheless, the approach proposed in this paper

does not rely on the assumption that P is Gaussian.

The main contributions of this paper can be summarized as follows.

• We propose a rich family of distributionally robust covariance matrix estimators. Each estimator is defined

as a solution of (3) for a particular ambiguity set of the form (2). Here, the nominal covariance matrix Σ̂

characterizes the center, the divergence D determines the geometry, and the radius ε determines the size

of the ambiguity set. We demonstrate that all such estimators are well-defined, unique and efficiently

computable under natural structural assumptions on D and mild regularity conditions on Σ̂ and ε.

• We prove that our distributionally robust covariance matrix estimators constitute nonlinear shrinkage

estimators, that is, they have the same eigenbasis as Σ̂, and their eigenvalues are obtained by shrinking

the spectrum of Σ̂ towards 0 by using a nonlinear shrinkage transformation depending onD and a shrinkage

intensity depending on ε. We further prove that these estimators improve the condition number of Σ̂.

• We identify various divergences commonly used in statistics, machine learning and information theory that

satisfy the requisite regularity conditions. To this end, we generalize Sion’s classic minimax theorem from

Euclidean spaces to Riemannian manifolds, which could be of independent interest. We also exemplify our

framework by deriving explicit analytical formulas for the distributionally robust covariance estimators

induced by the Kullback-Leibler divergence, the 2-Wasserstein distance and the Fisher-Rao distance.

• We prove that, if ε scales with the sample size n as O(n−
1
2 ), then the proposed estimators are strongly

consistent and enjoy finite-sample performance guarantees at a fixed confidence level. Numerical exper-

iments based on synthetic as well as real data for portfolio optimization and binary classification tasks

suggest that our robust estimators are competitive with state-of-the-art estimators from the literature.

The first robustness interpretation of a shrinkage estimator was discovered in the context of inverse covari-

ance matrix estimation [43]. Specifically, it was shown that a particular nonlinear shrinkage estimator can be

obtained by robustifying the maximum likelihood estimator for Σ−1
0 across all Gaussian distributions of the

training samples within a prescribed Wasserstein ball. This result critically relies on the restrictive assumption

that the unknown data-generating distribution, the nominal distribution as well as all other distributions in

the Wasserstein ball are Gaussian. In addition, this result has not been extended to more general ambiguity

sets based on other divergences beyond the 2-Wasserstein distance, thus limiting the modeler’s flexibility.

In this paper we show that a broad spectrum of shrinkage estimators for Σ0 can be obtained from a

versatile DRO model that does not rely on restrictive normality assumptions. That is, we seek the most

general conditions on the DRO model under which a shrinkage effect emerges. In addition, we uncover a deep

connection between the geometry of the ambiguity set, which is determined by the choice of the divergence D,

and the nonlinear shrinkage transformation of the corresponding distributionally robust estimator.

Notation. We use R = R ∪ {+∞} as a shorthand for the extended real line. The space of p-dimensional

real vectors and its subsets of (entry-wise) non-negative and positive vectors are denoted by Rp, Rp
+, and Rp

++,

respectively. Similarly, the space of symmetric matrices in Rp×p, as well as its subsets of positive semidefinite

and positive definite matrices, are denoted by Sp, Sp+, and Sp++, respectively. The group of orthogonal matrices

in Rp×p is denoted by Op, and Ip stands for the identity matrix in Rp×p. For any x ∈ Rp, we use x↓ and x↑

to denote the vectors obtained by rearranging the entries of x in non-increasing and non-decreasing order,

respectively. The trace of a matrix S ∈ Sp is defined as Tr[S] =
∑p

i=1 Sii. Finally, ∥M∥ = sup∥v∥2=1 ∥Mv∥2
and ∥M∥F = Tr[M⊤M ]

1
2 stand for the spectral norm and the Frobenius norm of M , respectively.
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2. Overview of Main Results

The distributionally robust estimation problem (3) perturbs—and thereby hopefully improves—the nom-

inal estimator Σ̂ in view of the divergence D. We now derive a simple reformulation of (3) as a standard

minimization problem, and we informally outline the main properties of the corresponding optimal solution,

which will be established rigorously in the remainder of the paper. From now on, the nominal covariance ma-

trix Σ̂ can be viewed as any näıve initial estimator for the covariance matrix Σ0. The construction of Σ̂ from

the samples ξ̂1, . . . , ξ̂n is immaterial for most of our discussion. As the loss function underlying problem (3)

is quadratic in ξ and as EQ[ξ] = 0, its expected value depends on Q only indirectly through the covariance

matrix Σ = EQ[ξξ
⊤]. Thus, the DRO problem (3) is equivalent to the robust covariance estimation problem

min
X∈Sp+

max
Σ∈Bε(“Σ)

Tr[X2]− 2Tr[ΣX] (4)

with uncertainty set

Bε(Σ̂) =
¶
Σ ∈ Sp+ : D(Σ, Σ̂) ≤ ε

©
. (5)

We stress that the divergence function D may fail to be symmetric, that is, D(X,Y ) may differ from D(Y,X).

It is therefore important to remember the convention that Σ̂ is the second argument of D in the definition

of Bε(Σ̂). Note also that Bε(Σ̂) grows with the size parameter ε and collapses to the singleton {Σ̂} for ε = 0.

The robust estimation problem (4) constitutes a zero-sum game between the statistician, who moves first and

chooses the estimator X, and nature, who moves second and chooses the covariance matrix Σ. The following

dual estimation problem is obtained by interchanging the order of minimization and maximization in (4).

max
Σ∈Bε(“Σ)

min
X∈Sp+

Tr[X2]− 2Tr[ΣX] (6)

From now on, we denote by X⋆ and Σ⋆ the optimal solutions of the primal and dual estimation problems (4)

and (6), respectively. In Section 3.1 below, we will identify mild conditions on D and Σ̂ under which X⋆

and Σ⋆ are indeed guaranteed to exist and to be unique. If the uncertainty set Bε(Σ̂) is convex and compact,

then strong duality prevails (that is, (4) and (6) share the same optimal value) by Sion’s classic minimax

theorem. As several popular divergence functions are non-convex in their first argument and thus induce a non-

convex uncertainty set Bε(Σ̂); however, we will develop a generalized minimax theorem that guarantees strong

duality under significantly more general conditions. Whenever strong duality holds, (X⋆,Σ⋆) constitutes a

Nash equilibrium of the zero-sum game between the statistician and nature [52, Lemma 36.2].

A cursory glance at its first-order optimality condition reveals that the inner minimization problem in (6)

is solved by X = Σ. Hence, the inner minimum evaluates to −Tr[Σ2] = −∥Σ∥2F. Eliminating the factor −1

further shows that Σ⋆ solves the maximization problem (6) if and only if it solves the minimization problem

min
Σ∈Sp+

¶
∥Σ∥2F : D(Σ, Σ̂) ≤ ε

©
. (PMat)

Thus, nature’s Nash strategy Σ⋆ can be computed by solving (PMat) instead of (6). By the defining properties

of Nash strategies, the statistician’s Nash strategy X⋆ must be a best response to Σ⋆, that is, X⋆ must solve

the inner minimization problem in (6) for Σ = Σ⋆. However, the unique optimal solution of this minimization

problem is Σ⋆. In summary, this reasoning implies that if strong duality holds, then the Nash strategies X⋆

and Σ⋆ of the statistician and nature coincide and are both given by the unique minimizer of problem (PMat).

Problem (PMat) is reminiscent of a ridge regression problem [21, 64], which seeks an estimator that mini-

mizes a weighted sum of a least squares fidelity term and a Frobenius norm regularization term. Indeed, prob-

lem (PMat) seeks a covariance matrix Σ with minimum Frobenius norm and a fidelity error of at most ε, where

the fidelity of Σ with respect to the nominal covariance estimator Σ̂ is measured by the divergence D(Σ, Σ̂).
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Divergence function D(Σ, Σ̂) Domain

Kullback-Leibler / Stein [28] 1
2

Ä
Tr[Σ̂−1Σ]− p+ log det(Σ̂Σ−1)

ä
Sp++ × Sp++

Wasserstein [18] Tr[Σ + Σ̂− 2
(
ΣΣ̂
) 1

2 ] Sp+ × Sp+

Fisher-Rao [3]
∥∥∥log(Σ̂− 1

2ΣΣ̂− 1
2 )
∥∥∥2
F

Sp++ × Sp++

Inverse Stein [28] 1
2

Ä
Tr[Σ−1Σ̂]− p+ log det(ΣΣ̂−1)

ä
Sp++ × Sp++

Symmetrized Stein / Jeffreys divergence [24] 1
2

Ä
Tr[ΣΣ̂−1 + Σ̂Σ−1]− 2p

ä
Sp++ × Sp++

Quadratic / Squared Frobenius Tr[(Σ− Σ̂)2] Sp+ × Sp+

Weighted quadratic Tr[(Σ− Σ̂)2Σ̂−1] Sp+ × Sp++

Table 1. Popular divergence functions and their domains. We adopt the convention from

convex analysis that each divergence evaluates to +∞ outside of its domain.

We now informally state our key result, which applies, among others, to all divergence functions of Table 1.

Theorem 1 (Distributionally robust estimator (informal)). If D is any divergence functions from Table 1,

the nominal covariance matrix Σ̂ satisfies a regularity condition, and ε > 0 is not too large, then the distri-

butionally robust estimator X⋆ exists, is unique, and can be computed efficiently via the following procedure.

(1) Compute the eigenvalues and the eigenvectors of the nominal covariance matrix Σ̂.

(2) Construct the inverse shrinkage intensity γ⋆ by solving a univariate nonlinear equation that depends

only on the spectrum of Σ̂.

(3) Shrink the eigenvalues of Σ̂ by applying a nonlinear transformation that depends only on γ⋆.

(4) Construct X⋆ by combining the eigenvectors found in step (1) with the eigenvalues found in step (3).

The estimator X⋆ constructed in this manner preserves the eigenvectors of Σ̂, shrinks the eigenvalues of Σ̂,

and reduces the condition number of Σ̂. Thus, it represents a nonlinear shrinkage estimator.

Theorem 1 reveals that a wide range of nonlinear shrinkage estimators admit a robustness interpretation in

the sense that they correspond to solutions of the distributionally robust estimation problem (3) for different

divergence functions. This insight is of interest from a statistical point of view because it relates nonlinear

shrinkage estimators to distributional ambiguity sets, which can be used to derive new generalization bounds.

Theorem 1 also implies that the distributionally robust estimation problem (3) can be solved efficiently by

diagonalizing Σ̂ and solving a univariate nonlinear equation, both of which are computationally cheap.

3. Distributionally Robust Covariance Shrinkage Estimators

This section formally introduces our distributionally robust estimation framework. Specifically, Section 3.1

details all technical assumptions needed throughout the paper, Section 3.2 formally states the main result,

and Section 3.3 describes several desirable properties of the emerging distributionally robust estimators.

3.1. Assumptions

The uncertainty set Bε(Σ̂) is non-convex for some choices of the divergence function D. In these cases,

we cannot use Sion’s minimax theorem to establish strong duality between the primal and dual estimation
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problems (4) and (6), respectively. Instead, we will have to develop a more nuanced minimax theorem. For

now, we assume that such a minimax theorem is readily available.

Assumption 1 (Minimax property). The minimum of the primal estimation problem (4) coincides with the

maximum of the dual estimation problem (6).

We will later see that Assumption 1 is satisfied for all divergence functions listed in Table 1. In addition,

we require D to constitute a spectral divergence in the sense of the following assumption.

Assumption 2 (Spectral divergence). The divergence function D : Sp+ × Sp+ → R is non-negative, and

satisfies the identity of indiscernibles, that is, for any (X,Y ) ∈ dom(D) we have D(X,Y ) = 0 if and only if

X = Y . In addition, D satisfies the following structural conditions.

(a) (Orthogonal equivariance) For any X,Y ∈ Sp+ and V ∈ O(p) we have D(X,Y ) = D(V XV ⊤, V Y V ⊤).

(b) (Spectrality) There exists a function d : R+ × R+ → R such that

D (Diag(x),Diag(y)) =

p∑
i=1

d(xi, yi) ∀x, y ∈ Rp
+

and d(a, b) is continuous1 in a for every b > 0. In the following, we refer to d as the generator of D.

(c) (Rearrangement property) For any x, y ∈ Rp
+ and V ∈ O(p) we have

D
(
V Diag(x↑)V ⊤,Diag(y↑)

)
≥ D

(
Diag(x↑),Diag(y↑)

)
.

If its left side is finite, this inequality becomes an equality if and only if Diag(x↑) = V Diag(x↑)V ⊤.

Assumptions 2(a) and 2(b) imply that if X and Y are simultaneously diagonalizable, then the divergence

of X with respect to Y depends only on the spectra of X and Y and the generator d. Specifically, we have

D(X,Y ) = D(V Diag(x)V ⊤, V Diag(y)V ⊤) = D(Diag(x),Diag(y)) =

p∑
i=1

d(xi, yi), (7)

where the entries of the vectors x and y represent the eigenvalues and where the columns of the orthonormal

matrix V represent the (common) eigenvectors of X and Y , respectively. Note that the last two equalities

in (7) readily follow from 2(a) and 2(b). Assumption 2(b) further implies that if D is a spectral divergence

on Sp+, then its generator d is a spectral divergence on R+. Indeed, restricting x and y to multiples of the

vector of all ones reveals via Assumption 2(b) that dom(d) = {(a, b) ∈ R2
+ : (aId, bId) ∈ dom(D)} and

that d inherits continuity, non-negativity and the identity of indiscernibles from D. Orthogonal equivariance,

spectrality, and the rearrangement inequality are trivially satisfied in the one-dimensional case. Finally, we

point out that Assumption 2(c) is reminiscent of the Hardy-Littlewood-Polyak rearrangement inequality [19],

which asserts that (x↑)⊤y↓ ≤ x⊤y ≤ (x↑)⊤y↑ for any vectors x, y ∈ Rp.

Our results also require the following assumptions about the eigenvalues x̂1, . . . , x̂p of the nominal covari-

ance matrix Σ̂ as well as about the radius ε of the uncertainty set Bε(Σ̂).

Assumption 3 (Regularity of input parameters). The following hold.

(a) For any i = 1, . . . , p we have (x̂i, x̂i) ∈ dom(d).

(b) The radius ε of the uncertainty set satisfies 0 < ε < ε̄, where ε̄ =
∑p

i=1 d(0, x̂i).

Together with Assumptions 2(a) and 2(b), Assumption 3(a) ensures that the nominal covariance matrix Σ̂

is feasible in problem (PMat). Indeed, inserting X = Y = Σ̂ into (7) implies that D(Σ̂, Σ̂) = 0. This implies

that (Σ̂, Σ̂) ∈ dom(D) and, more importantly, that the feasible region of problem (PMat) is non-empty. This

assumption is not entirely innocent because some divergence functions from Table 1 have domain Sp++×Sp++.

In all these cases, Assumption 3(a) requires that Σ̂ has full rank and, if Σ̂ is the sample covariance matrix,

that the sample size n is at least as large as the dimension p. Assumption 3(b) ensures that the radius ε > 0

1By convention, a continuous extended real-valued function must tend to ∞ when approaching the boundary of its domain.
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is small enough for the feasible region of the reformulated dual estimation problem (PMat) not to contain 0.

Otherwise, problem (PMat) would trivially be solved by the nonsensical estimator X⋆ = 0.

Assumption 4 (Smoothness and convexity of the generator d). For any b > 0, the function d( · , b) is twice

continuously differentiable throughout R++ and convex on the interval [0, b].

Assumption 4 implies that the domain of d( · , b) contains R++ for every b > 0. Hence, d(a, b) can evaluate

to +∞ only at a = 0, which means that the domain of d( · , b) is either R+ or R++. We emphasize that the

convexity of d( · , b) on the interval [0, b] does not imply that problem (PMat) is convex. However, we will see

below that this restricted convexity assumption helps us to reduce problem (PMat) to a convex program.

3.2. Construction of the Distributionally Robust Estimator

We need the following notation to restate Theorem 1 rigorously. We denote the i-th smallest eigenvalue

of a symmetric matrix S ∈ Sp by λi(S), and we use λ(S) = (λ1(S), . . . , λp(S)) as a shorthand for the

spectrum of S. We also reserve the symbols x̂i = λi(Σ̂) and v̂i for the non-negative eigenvalues and the

corresponding orthonormal eigenvectors of the nominal covariance matrix Σ̂. In addition, we use x̂ = λ(Σ̂)

and “V = (v̂1, . . . , v̂p) to denote the nominal spectrum and the orthogonal matrix of the nominal eigenvectors,

respectively. The nominal covariance matrix thus admits the spectral decomposition Σ̂ = “V Diag(x̂)“V ⊤. We

also define the auxiliary function s : R2
+ → R corresponding to a divergence function with generator d via

s(γ, b) =

{
the unique solution a⋆ ≥ 0 of the equation 0 = 2a⋆ + γ ∂d

∂a (a
⋆, b) if b > 0 and γ > 0,

0 if b = 0 or γ = 0.
(8)

In the remainder of the paper, we refer to s as the eigenvalue map. We will see below that it is well-defined

under Assumption 4, which implies that the nonlinear equation in (8) has a unique solution whenever b > 0.

We will also prove that s(γ, b) ≤ b for every γ, b ≥ 0, which means that it can be viewed as a shrinkage

transformation that maps any input eigenvalue b ≥ 0 to a smaller output eigenvalue s(γ, b) for every fixed γ.

Given these conventions, we are now ready to restate Theorem 1 formally.

Theorem 1 (Distributionally robust estimator (formal)). If Assumptions 1–4 hold, then the distributionally

robust estimator X⋆ exists and is unique. If, additionally, γ⋆ is the unique positive root of the equation

p∑
i=1

d(s(γ, x̂i), x̂i)− ε = 0,

then the distributionally robust estimator admits the spectral decomposition X⋆ = “V Diag(x⋆)“V ⊤ with eigen-

values x⋆i = s(γ⋆, x̂i), i = 1, . . . , p, where 0 < x⋆i < x̂i whenever x̂i > 0 and x⋆i = 0 whenever x̂i = 0.

Theorem 1 provides a quasi-closed form expression for the optimal covariance estimator X⋆ that solves the

robust estimation problem (4) as well as its dual reformulation (PMat). In particular, it shows that X⋆ has

the same eigenvectors as Σ̂ and that all positive eigenvalues of X⋆ can be computed by solving a nonlinear

equation parametrized by γ⋆. Remarkably, this nonlinear equation admits a closed-form solution for all

divergences listed in Table 1. In addition, we will see that γ⋆ can be computed efficiently by bisection. All of

this implies that the complexity of computing X⋆ is largely determined by the complexity of diagonalizing Σ̂.

In addition, we will see that x⋆i = s(γ⋆, x̂i) decreases with γ
⋆. Thus, X⋆ and γ⋆ are naturally interpreted as

a nonlinear shrinkage estimator and inverse shrinkage intensity, respectively.

We now outline the high-level structure of the proof of Theorem 1; see Figure 1 for a visualization. The

proof is divided into three steps that give rise to three propositions. Proposition 1 below first shows that there

is a one-to-one relationship between the minimizers of the robust estimation problem (4) and problem (PMat).

Proposition 1 (Dual characterization of X⋆). If Assumption 1 holds, then the primal and dual robust

estimation problems (4) and (6) are equivalent to problem (PMat) in the following sense.



A GEOMETRIC UNIFICATION OF DISTRIBUTIONALLY ROBUST COVARIANCE ESTIMATORS 9

(i) If Σ⋆ solves (PMat), then X
⋆ = Σ⋆ solves (4), and Σ⋆ solves (6).

(ii) If X⋆ solves (4) and Σ⋆ solves (6), then X⋆ coincides with Σ⋆ and solves (PMat).

The proof of Proposition 1 follows immediately from the discussion in Section 2 and is thus omitted. Next,

we show that problem (PMat), which optimizes over all matrices in the positive semidefinite cone Sp+, is

equivalent to problem (PVec) below, which optimizes over all vectors in the non-negative orthant Rp
+:

min
x∈Rp

+

{
∥x∥22 :

p∑
i=1

d (xi, x̂i) ≤ ε

}
. (PVec)

We henceforth use x⋆ to denote the unique minimizer of problem (PVec) if it exists.

Problem (4)

{X⋆} ≜ Argmin
X∈Sp+

max
Σ∈Bε(“Σ)

Tr[X2]− 2Tr[ΣX]

Problem (PMat)

{Σ⋆} ≜ Argmin
Σ∈Sp+

¶
∥Σ∥2F : D(Σ, Σ̂) ≤ ε

©X⋆ = Σ⋆

Proposition 1

Problem (PVec)

{x⋆} ≜ Argmin
x∈Rp

+

{
∥x∥22 :

p∑
i=1

d(xi, x̂i) ≤ ε

}First-order condition

γ⋆ > 0 unique solution of x⋆i = s (γ⋆, x̂i) ∀i

Proposition 3

Proposition 2
Σ⋆ = “V Diag(x⋆) “V ⊤

x⋆i = λi(Σ
⋆) ∀i

p∑
i=1

d(s(γ, x̂i), x̂i)− ε = 0

Theorem 1 X⋆ = “V Diag(s(γ⋆, x̂i))“V ⊤

Figure 1. Structure of the proof of Theorem 1. An arc indicates that the solution to the

problem at the arc’s tail can be used to construct a solution for the problem at the arc’s head.

Proposition 2 (Equivalence of (PMat) and (PVec)). If Assumption 2 holds, then problem (PMat) is equivalent

to problem (PVec) in the following sense.

(i) If x⋆ solves (PVec), then “V Diag(x⋆)“V ⊤ solves (PMat).

(ii) If Σ⋆ solves (PMat), then λ(Σ
⋆) solves (PVec).

In the third and last step, we solve problem (PVec) in quasi-analytical form. To this end, we denote

the Lagrange multiplier associated with the divergence constraint
∑p

i=1 d (xi, x̂i) ≤ ε by γ⋆. The following

proposition characterizes the unique solution of problem (PVec) through an explicit function of γ⋆ and shows

that (PVec) can be computed by solving a single nonlinear equation.

Proposition 3 (Solution of (PVec)). If Assumptions 2, 3 and 4 hold, then problem (PVec) admits a unique

optimal solution x⋆ with components x⋆i = s(γ⋆, x̂i), i = 1, . . . , p, where γ⋆ is the unique positive root of the

equation
∑p

i=1 d(s(γ, x̂i), x̂i)−ε = 0. We also have 0 < x⋆i < x̂i whenever x̂i > 0 and x⋆i = 0 whenever x̂i = 0.

In summary, Proposition 3 provides a simple characterization of γ⋆ and shows how one can use γ⋆ to

construct a unique solution x⋆ for problem (PVec). Proposition 2 reveals how x⋆ can be used to construct

a unique solution X⋆ for problem (PVec), and Proposition 1 guarantees that X⋆ is uniquely optimal in the

robust estimation problem (4). Taken together, Propositions 1, 2 and 3 therefore prove Theorem 1.

3.3. Properties of the Distributionally Robust Estimator

We now highlight several desirable characteristics of the distributionally robust covariance estimator X⋆.
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3.3.1. Efficient Computation

We have seen that X⋆ can be constructed from x⋆, which can be constructed from γ⋆. In addition, we

have seen that the Lagrange multiplier γ⋆ is the unique positive root of the equation F (γ) = 0, where the

function F : R+ → R is defined through F (γ) =
∑p

i=1 d(s(γ, x̂i), x̂i)− ε. The following proposition suggests

that this root-finding problem can be solved highly efficiently by bisection or Newton’s method.

Proposition 4 (Structural properties of F ). If Assumptions 2, 3 and 4 hold, then the function F is differ-

entiable and strictly decreasing on R++. In addition, we have limγ→0 F (γ) > 0 and limγ→∞ F (γ) < 0.

Suppose now that we have access to an a priori upper bound γ̄ > 0 on the Lagrange multiplier γ⋆. Note

that γ̄ is guaranteed to exist under the assumptions of the proposition. Section 4 shows that γ̄ can be

constructed explicitly for several popular divergence functions. The structural properties of F established in

Proposition 4 allow us to estimate the number of function evaluations needed to compute γ⋆. For example,

γ⋆ can be computed via bisection to within an absolute error of δ > 0 using log2(γ̄/δ) function evaluations.

Under additional mild conditions, γ⋆ can also be computed via Newton’s method to within an absolute error

of δ > 0 using merely O(log2 log2(γ̄/δ)) function and derivative evaluations [11, Theorem 2.4.3].

3.3.2. Shrinkage Properties

Proposition 3 asserts that if Assumptions 2, 3 and 4 hold, then the optimal solution x⋆ of problem (PVec)

is unique and can thus be seen as a function x⋆(ε) of the radius ε ∈ (0, ε̄) of the uncertainty set, where ε̄ is

defined as in Assumption 3(b). In fact, x⋆(ε) can naturally be extended to a function on [0, ε̄]. As d satisfies

the identity of indiscernibles, we can define x⋆(0) = x̂ as the unique solution of problem (PVec) for ε = 0.

In addition, we may define x⋆(ε̄) = 0. One can then show that each component of x⋆(ε) monotonically

decreases to 0 on [0, ε̄]. By Theorem 1, the distributionally robust estimator X⋆ = “V Diag(x⋆)“V ⊤ inherits the

eigenbasis from the nominal covariance matrix Σ̂. Hence, X⋆ and Σ̂ commute, and X⋆ is rotation equivariant.

In summary, these insights imply that X⋆ essentially shrinks the eigenvalues of Σ̂ towards zero.

Proposition 5 (Shrinkage estimator). If Assumptions 2, 3 and 4 hold, then x⋆i (ε) is non-increasing on [0, ε̄]

and satisfies limε↑ε̄ x
⋆
i (ε) = 0 for every i = 1, . . . , p. If additionally Assumption 1 holds, then X⋆ constitutes

a shrinkage estimator, that is, it has the same eigenvectors as Σ̂ and satisfies 0 ⪯ X⋆ ⪯ Σ̂.

Proposition 5 asserts that the eigenvalues of X⋆ are bounded above by the corresponding nominal eigenval-

ues. This shrinkage property persists across a remarkably broad class of estimators. The shrinkage effects of

robustification were first discovered in a distributionally robust inverse covariance estimation problem with a

Wasserstein ambiguity set [43]. The results presented here are significantly more general. Indeed, they reveal

that a broad class of divergence functions gives rise to diverse shrinkage estimators.

3.3.3. Improvement of the Condition Number

The condition number κ(X) of a positive definite matrix X ∈ Sp++ is defined as the ratio of its largest to

its smallest eigenvalue. It is well known that unless n ≫ p, the sample covariance matrix Σ̂SA tends to be

ill-conditioned, that is, κ(Σ̂SA) ≫ 1 [63]. Therefore, most shrinkage estimators are designed to improve the

condition number of an ill-conditioned baseline estimator Σ̂. Below we will show that the distributionally

robust estimator X⋆ is also guaranteed to improve the condition number of Σ̂ whenever the generator d of

the divergence D satisfies a second-order differential inequality.

Assumption 5 (Differential inequality). The generator d of the divergence function D is twice continuously

differentiable on R2
++ and satisfies the following differential inequality for all a, b ∈ R++ with a < b.

a
∂2

∂a2
d(a, b) + b

∂2

∂a∂b
d(a, b) ≥ ∂

∂a
d(a, b)
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Assumption 5 may be difficult to check. In Theorem 2 below, we will show, however, that it is satisfied by

all divergence functions of Table 1. We can now prove that robustification improves the condition number.

Proposition 6 (Improved condition number). If Assumptions 1–5 hold and Σ̂ ∈ Sp++, then κ(X
⋆) ≤ κ(Σ̂).

The proof of Proposition 6 exploits a generalized monotonicity property of the eigenvalue map s(γ, b).

Lemma 1 (Generalized monotonicity property of the eigenvalue map s). If Assumptions 2, 4 and 5 hold,

then we have s(γ, b2)/s(γ, b1) ≤ b2/b1 for all γ > 0 and b1, b2 ∈ R++ with b2 ≥ b1.

Recall from Theorem 1 that x⋆i = s(γ⋆, x̂i) for all i = 1, . . . , p and that γ⋆ > 0. Therefore, Proposition 6

follows immediately from Lemma 1.

3.3.4. Statistical Guarantees

We finally show that the distributionally robust estimator is consistent and enjoys a finite-sample per-

formance guarantee. To this end, we make the dependence on n explicit, that is, we let X⋆
n be the unique

solution of (4), where the nominal estimator is any covariance estimator Σ̂n constructed from n i.i.d. training

samples, and where the radius is set to a non-negative number εn that may depend on n ∈ N. We say a

covariance estimator is strongly consistent if it converges almost surely to Σ0 as n tends to infinity.

Proposition 7 (Consistency). Suppose that Assumptions 1–4 hold and that d is continuous on R+ × R++.

If Σ̂n is a strongly consistent estimator and εn converges to 0 as n grows, then X⋆
n is strongly consistent.

Proposition 7 is intuitive because the uncertainty set is assumed to shrink with n, and the nominal covari-

ance matrix at its center is assumed to be consistent. As the uncertainty set is defined as a generic divergence

ball, however, the proof is perhaps surprisingly tedious. The standard example of a consistent nominal covari-

ance estimator Σ̂n is the sample covariance matrix. Next, we establish finite-sample performance guarantees,

that is, we show that the uncertainty set of radius εn ∝ n−
1
2 around the sample covariance matrix constitutes

a confidence region for Σ0. In the following we say that the probability distribution P is sub-Gaussian if

there exists σ2 ≥ 0 with EP[exp(z
⊤ξ)] ≤ exp( 12σ

2∥z∥22) for every z ∈ Rp. As both sides of this inequality are

differentiable and coincide at z = 0, one can show that any sub-Gaussian distribution P must have mean 0.

Proposition 8 (Finite-sample performance guarantee). Suppose that P is sub-Gaussian with covariance

matrix Σ0 ∈ Sp++, and let Σ̂n be the sample covariance matrix corresponding to n i.i.d. samples from P. For

any divergence function D from Table 1 there exist nmin(η) = O(log η−1) and εmin(n, η) = O(n−
1
2 (log η−1)

1
2 )

that may depend on P such that Pn[Σ0 ∈ Bε(Σ̂n)] ≥ 1− η for every n ≥ nmin(η) and ε ≥ εmin(n, η).

Proposition 8 implies that if n ≥ nmin(η) and ε ≥ εmin(n, η), then the optimal value of the robust covariance

estimation problem (4) provides a (1−η)-upper confidence bound on the actual estimation error with respect

to the true covariance matrix Σ0. We emphasize that the dependence of nmin(η) and εmin(n, η) on the sample

size n and significance level η is sometimes substantially better than the worst-case dependence reported in

Proposition 8. Explicit formulas for nmin(η) and εmin(n, η) tailored to different divergence functions can be

found in the proof of Proposition 8 in the appendix.

4. A Zoo of New Covariance Shrinkage Estimators

In this section, we first show that the assumptions of Theorem 1 are satisfied by a broad spectrum of diver-

gence functions commonly used in statistics, information theory, and machine learning. Next, we explicitly

construct the shrinkage estimators corresponding to three popular divergence functions.

Theorem 2 (Validation of assumptions). All divergences in Table 1 satisfy Assumptions 1, 2, 4 and 5.
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We emphasize that the uncertainty sets corresponding to the Fisher-Rao and inverse Stein divergences

fail to be convex, in which case one cannot use standard minimax results to prove Assumption 1. However,

perhaps surprisingly, in Appendix C.2, we show that the uncertainty sets corresponding to these divergences

are geodesically convex with respect to a particular Riemannian geometry on the space of positive definite

matrices. Moreover, we prove a Riemannian minimax theorem, which requires geodesic convexity instead of

ordinary convexity and, therefore, significantly generalizes the classic Euclidean minimax results; see Theo-

rem 3 in Appendix C.3. This new theorem enables us to prove the desired minimax property even for robust

estimation problems based on the Fisher-Rao and inverse Stein divergences.

To showcase the richness of our framework, we now focus on three popular divergence functions and

analyze the corresponding robust covariance estimators. Specifically, we will derive the optimal solutions of

problem (PVec) in quasi-closed form for the Kullback-Leibler, Wasserstein, and Fisher-Rao divergences. In

doing so, we develop a general recipe for the other divergence functions listed in Table 1.

4.1. The Kullback-Leibler Covariance Shrinkage Estimator

Table 1 defines the Kullback-Leibler (KL) divergence between two matrices Σ1,Σ2 ∈ Sp++ as

DKL(Σ1,Σ2) =
1

2

(
Tr[Σ−1

2 Σ1]− p+ log det(Σ2Σ
−1
1 )
)
.

This KL divergence between matrices is intimately related to the KL divergence between distributions.

Definition 1 (KL divergence). If P1 and P2 are two probability distributions on Rp, and P1 is absolutely

continuous with respect to P2, then the KL divergence from P1 to P2 is KL(P1∥P2) =
∫
Rp log(

dP1

dP2
(x))dP2(x).

The following lemma shows that the KL divergence between two non-degenerate zero-mean Gaussian

distributions coincides with the KL divergence between their positive definite covariance matrices.

Lemma 2 (KL divergence between Gaussian distributions [28]). The KL divergence from P1 = N (0,Σ1) to

P2 = N (0,Σ2) with Σ1,Σ2 ∈ Sp++ is given by KL(P1∥P2) = DKL(Σ1,Σ2).

Lemma 2 justifies our terminology of referring to DKL as the KL divergence and suggests that DKL

inherits many properties of the KL divergence between distributions. For example, it is easy to verify

that DKL satisfies the identity of indiscernibles but fails to be symmetric. Indeed, for any Σ ∈ Sp++ we

have DKL(Σ, 2Σ) = p
2 (1 − log(2)) ≈ 0.15p, whereas DKL(2Σ,Σ) = p

2 (log(2) −
1
2 ) ≈ 0.1p. An elementary

calculation further reveals that the generator d corresponding to the KL divergence DKL can be expressed as

d(a, b) =
1

2

(a
b
− 1− log

(a
b

))
.

The following corollary of Theorem 1 characterizes the eigenvalue map and the inverse shrinkage intensity

corresponding to the KL divergence, which determines the KL covariance shrinkage estimator.

Corollary 1 (KL covariance shrinkage estimator). If D is the KL divergence, Σ̂ ∈ Sp++ and ε > 0, then

problem (4) is uniquely solved by the KL covariance shrinkage estimator X⋆ = “V Diag(x⋆)“V ⊤ with shrunk

eigenvalues x⋆i = s(γ⋆, x̂i), i = 1, . . . , p. The underlying eigenvalue map is given by

s(γ, b) =
−γ +

√
γ2 + 16b2γ

8b
, (9a)

and the inverse shrinkage intensity γ⋆ ∈ (0, γKL] is the unique positive solution of the nonlinear equation

2ε+ p+

p∑
i=1

ï
−s(γ

⋆, x̂i)

x̂i
+ log

s(γ⋆, x̂i)

x̂i

ò
= 0, (9b)

where

γKL =
4 x̂2p exp(−4ε/p)

1− exp(−2ε/p)
> 0.
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4.2. The Wasserstein Covariance Shrinkage Estimator

Table 1 defines the Wasserstein divergence between two matrices Σ1,Σ2 ∈ Sp+ as

DW(Σ1,Σ2) = Tr[Σ1 +Σ2 − 2
(
Σ1Σ2

) 1
2 ].

In the following, we will show that the Wasserstein distance between matrices is closely related to the squared

2-Wasserstein distance between distributions, where the transportation cost is defined via the 2-norm.

Definition 2 (Wasserstein distance). The 2-Wasserstein distance between two probability distributions P1

and P2 on Rp with finite second moments is defined as

W2(P1,P2) =

Å
inf

π∈Π(P1,P2)

∫
Rp×Rp

∥x1 − x2∥22 dπ(x1, x2)
ã 1

2

,

where Π(P1,P2) denotes the set of probability distributions on Rp×Rp with marginals P1 and P2, respectively.

One can show that Wasserstein distance W2 is a metric on the space of probability distributions with finite

second moments [65, § 6]. However, the squared Wasserstein distance W 2
2 is only a divergence as it fails to

satisfy the triangle inequality. The following lemma shows that the squared 2-Wasserstein distance between

two zero-mean Gaussian distributions matches the Wasserstein divergence between their covariance matrices.

Lemma 3 (Squared Wasserstein distance between Gaussian distributions [18]). The squared 2-Wasserstein

distance between P1 = N (0,Σ1) and P2 = N (0,Σ2) evaluates to W2(P1,P2)
2 = DW(Σ1,Σ2).

Lemma 3 justifies our terminology of referring to DW as the Wasserstein divergence and suggests that

DW inherits many properties from the Wasserstein distance between distributions. Note that DW remains

well-defined even if Σ1 or Σ2 are rank-deficient. The generator d of the Wasserstein divergence DW is given by

d(a, b) = a+ b− 2
√
ab.

The following corollary of Theorem 1 characterizes the eigenvalue map and inverse shrinkage intensity corre-

sponding to the Wasserstein divergence, which determines the Wasserstein covariance shrinkage estimator.

Corollary 2 (Wasserstein covariance shrinkage estimator). If D is the Wasserstein divergence, Σ̂ ∈ Sp+
and ε ∈ (0,Tr[Σ̂]), then problem (4) is uniquely solved by the Wasserstein covariance shrinkage estimator

X⋆ = “V Diag(x⋆)“V ⊤ with eigenvalues x⋆i = s(γ⋆, x̂i), i = 1, . . . , p. The underlying eigenvalue map is given by

s(γ, b) =

Ñ®
γ

4

Ç√
b+

…
b+

2

27
γ

å´ 1
3

− γ

6

®
γ

4

Ç√
b+

…
b+

2

27
γ

å´− 1
3

é2

(10a)

and the inverse shrinkage intensity γ⋆ ∈ (0, γW] is the unique positive solution of the nonlinear equation

ε−
p∑

i=1

(√
x̂i −

»
s(γ⋆, x̂i)

)2
= 0, (10b)

where γW = 2
»
p x̂3p/ε > 0.

The requirement that ε be strictly smaller than Tr[Σ̂] is equivalent to Assumption 3(b). It is needed

to prevent problem (PVec) from admitting the trivial solution x⋆ = 0. To see this, note that the condition

ε ≥ Tr[Σ̂] is equivalent to
∑p

i=1 d(0, x̂i) ≤ ε, which in turn implies that 0 is feasible and even optimal in (PVec).

In this case, the trivial (and essentially nonsensical) estimator X⋆ = 0 would be optimal in problem (4).
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4.3. The Fisher-Rao Covariance Shrinkage Estimator

Table 1 defines the Fisher-Rao divergence between two matrices Σ1,Σ2 ∈ Sp++ as

DFR(Σ1,Σ2) = ∥ log(Σ− 1
2

2 Σ1Σ
− 1

2
2 )∥2F.

The Fisher-Rao divergence can be interpreted as the Fisher-Rao distance on a particular statistical manifold.

Definition 3 (Fisher-Rao distance). Consider a family of probability density functions {fθ(ξ)}θ∈Θ whose

parameter θ ranges over a Riemannian manifold Θ with metric Iθ =
∫
Ξ
fθ(ξ)∇θ log(fθ(ξ))∇θ log(fθ(ξ))

⊤dξ.

The geodesic distance FR(θ1, θ2) on Θ induced by this metric is referred to as the Fisher-Rao distance.

Note that Iθ represents the Fisher information matrix corresponding to the parameter θ. Next, we show

that the squared Fisher-Rao distance between two non-degenerate zero-mean Gaussian probability density

functions is proportional to the Fisher-Rao divergence between their positive definite covariance matrices.

Lemma 4 (Fisher-Rao distance between positive definite covariance matrices [3]). Let {fθ(ξ)}θ∈Θ be the

family of all non-degenerate zero-mean Gaussian probability density functions encoded by their covariance

matrices θ = Σ, which range over the Riemannian manifold Θ = Sp++ equipped with the Fisher-Rao distance.

If θ1 = Σ1 and θ2 = Σ2 belong to Sp++, then FR(θ1, θ2)
2 = 1

2DFR(Σ1,Σ2).

Lemma 4 justifies our terminology of referring to DFR as the Fisher-Rao divergence. As DFR is propor-

tional to the squared Fisher-Rao distance FR2, it fails to satisfy the triangle inequality and is indeed only

a divergence. Moreover, Example 1 in Appendix C.1 reveals that DFR is neither convex nor quasi-convex.

However, it is geodesically convex. The generator d corresponding to DFR can be expressed as

d(a, b) = (log(a/b))2.

The following corollary of Theorem 1 characterizes the eigenvalue map and inverse shrinkage intensity corre-

sponding to the Fisher-Rao divergence, which characterizes the Fisher-Rao covariance estimator.

Corollary 3 (Fisher-Rao covariance shrinkage estimator). If D is the Fisher-Rao divergence, Σ̂ ∈ Sp++

and ε > 0, then problem (4) is uniquely solved by the Fisher-Rao covariance shrinkage estimator X⋆ =“V Diag(x⋆)“V ⊤ with eigenvalues x⋆i = s(γ⋆, x̂i), i = 1, . . . , p. The underlying eigenvalue map is given by

s(γ, b) = b exp

Å
−1

2
W0

(
2b2/γ

)ã
, (11a)

and W0 denotes the principal branch of the Lambert-W function. In addition, the inverse shrinkage intensity

γ⋆ ∈ (0, γFR] with γFR = ∥Σ̂∥2F/
√
ε > 0 is the unique positive solution of the nonlinear equation

p∑
i=1

W 2
0

(
2 x̂2i /γ

)
= 4ε. (11b)

4.4. Other Covariance Shrinkage Estimators

Theorem 2 ensures that all divergence functions from Table 1 satisfy Assumptions 1, 2, 4 and 5 and thus
induce via Theorem 1 a distributionally robust covariance shrinkage estimator. The generators and eigenvalue
maps corresponding to all these divergences can be derived by using similar techniques as in Corollaries 1, 2,
and 3. Details are omitted for brevity. All generators and eigenvalue maps are provided in Table 2.
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Divergence d(a, b) dom(d) s(γ, b) for b > 0

Kullback-Leibler/Stein 1
2

(
a
b
− 1− log a

b

)
R++ × R++

−γ+
√

γ2+16b2γ
8b

Wasserstein a+ b− 2
√
ab R+ × R+

Ç(
γ
4

(√
b+
»

b+ 2
27

γ
)) 1

3 − γ
6

(
γ
4

(√
b+
»

b+ 2
27

γ
))− 1

3

å2

Fisher-Rao (log a
b
)2 R++ × R++ b exp(− 1

2
W0(2b2/γ))

Inverse Stein 1
2

Ä
b
a
− 1− log b

a

ä
R++ × R++

31/3
(√

3γ2(27b2+γ)+9γb
)2/3

−32/3γ

6
(√

3γ2(27b2+γ)+9γb
)1/3

Symmetrized Stein/

Jeffreys divergence

1
2

Ä
b
a
+ a

b
− 2
ä

R++ × R++

1
12

(
γ2

b
(
216γb4+12

√
3(108(γ2b8−3(γb)4)−γ3

)
+

(
216γb4+12

√
3(108(γ2b8−3(γb)4)−γ3

)
b

− γ
b

)
Quadratic/

Squared Frobenius
(a− b)2 R+ × R+

b
γ+b

Weighted quadratic
(a−b)2

b
R+ × R++

γb
γ+b

Table 2. Generators and eigenvalue maps of the divergences from Table 1.

5. Numerical Experiments

We now compare our distributionally robust covariance estimators against the linear shrinkage estimator

with shrinkage target 1
n Tr[Σ̂]In [32] as well as a state-of-the-art nonlinear shrinkage estimator proposed by

Ledoit and Wolf [35], henceforth referred to as the NLLW estimator. The performance of the linear shrinkage

estimator depends on the choice of the mixing parameter α ∈ [0, 1], which we calibrate via cross-validation.

We first study the dependence of our estimators on the radius ε of the uncertainty set. Using synthetic

data, we assess their Frobenius risk as a function of the sample size. Using real data, we further test the

performance of minimum variance portfolios constructed from our estimators. In addition, we illustrate the

use of covariance estimators in the context of linear and quadratic discriminant analysis. The code for all

experiments as well as an implementation of our methods can be found on GitHub.2

5.1. Dependence on the Radius of the Uncertainty Set

We first study the decay of the eigenvalues and the condition number of the Kullback-Leibler, Wasserstein,

and Fisher-Rao covariance shrinkage estimators with the radius ε of the uncertainty set. To this end, we

set p = 3 and consider a nominal covariance matrix with eigenvalue spectrum λ(Σ̂) = [1, 2, 3]. Figure 2

visualizes the eigenvalues ofX⋆ as a function of ε. In agreement with Proposition 5, we observe thatX⋆ shrinks

the eigenvalues of the underlying nominal estimator Σ̂ towards 0 as ε grows. Recall from Assumption 3(b)

and the subsequent discussion that X⋆ = 0 whenever ε ≥
∑p

i=1 d(0, x̂i). As the generator of the Wasserstein

divergence satisfies d(0, b) = b, the eigenvalues of the Wasserstein covariance shrinkage estimator thus vanish

for any ε ≥ Tr[Σ̂]. In contrast, the eigenvalues of the Kullback-Leibler and Fisher-Rao covariance shrinkage

estimators remain strictly positive for all ε. We further observe that, for small values of ε, the Wasserstein

and Fisher-Rao covariance shrinkage estimators primarily shrink the large eigenvalues of Σ̂ and keep the

small ones constant. Figure 3 visualizes the condition number κ(X⋆) as a function of ε. As predicted by

Proposition 6, κ(X⋆) is at most as large as κ(Σ̂). Note also that κ(X⋆) is undefined for ε ≥
∑p

i=1 d(0, x̂i).

Figure 3 indicates that the condition number of X⋆ decreases monotonically as ε tends to
∑p

i=1 d(0, x̂i).

2https://github.com/yvesrychener/covariance_DRO

https://github.com/yvesrychener/covariance_DRO
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Figure 2. Eigenvalues of three different distributionally robust covariance estimators as a

function of the radius ε for λ(Σ̂) = [1, 2, 3].
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Figure 3. Condition number of three different distributionally robust covariance estimators

as a function of the radius ε for λ(Σ̂) = [1, 2, 3].

5.2. Frobenius Error

In the first experiment, we use synthetic data to analyze the Frobenius risk of different covariance esti-

mators. Specifically, we construct a diagonal covariance matrix Σ0 ∈ S100++ with 90 eigenvalues equal to 1

and 10 ‘spiking’ eigenvalues equal to M ∈ {10, 100, 500}. Thus, we have κ(Σ0) = M . Next, we let Σ̂ be

the sample covariance matrix constructed from n ∈ {100, 200, 500} independent samples from P = N (0,Σ0).

This experimental setup captures the small to medium sample size regime with n ≳ p, in which we expect Σ̂

to provide a poor approximation for Σ0. We thus compare Σ̂ against the Kullback-Leibler, Wasserstein, and

Fisher-Rao covariance shrinkage estimators as well as against the linear shrinkage estimator with shrinkage

target 1
n Tr[Σ̂]In and against the NLLW estimator. Figure 4 visualizes the Frobenius loss of all estimators as a

function of the underlying hyperparameters, that is, the radius ε of the uncertainty set for the distributionally

robust estimators and the mixing weight α for the linear shrinkage estimator. The NNLW estimator and the

sample covariance matrix involve no hyperparameters and are thus visualized as horizontal lines. Figure 4

shows both the means (solid lines) as well as the areas within one standard deviation of the means (shaded

areas) of the Frobenius loss based on 10 independent training sets for all possible combinations of M and n.

As ε tends to 0, all distributionally robust estimators approach the sample covariance matrix. Thus, they

overfit the data and display a high variance. As ε tends to
∑p

i=1 d(0, x̂i), on the other hand, all distribution-

ally robust estimators collapse to 0 and thus display a high bias. We thus face a classic bias-variance trade-off.

Figure 4 reveals that the Frobenius loss of the distributionally robust estimators is minimal at intermediate

values of ε. We observe that the linear shrinkage estimator is competitive with the distributionally robust

estimators for well-conditioned covariance matrices (small M , top row). As the covariance matrix becomes

more ill-conditioned (large M , middle and bottom rows), the linear shrinkage estimator is dominated by the
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Figure 4. Frobenius loss of the Kullback-Leibler (blue), Wasserstein (orange), and Fisher-

Rao (green) covariance shrinkage estimators and of the linear shrinkage estimator (red) as a

function of the underlying hyperparameter (radius ε or mixing weight α) for different spike

sizes M and sample sizes n. The sample covariance matrix (gray) and the NLLW estimator

(purple) involve no hyperparameters; thus, their Frobenius error is constant.

distributionally robust estimators, which attain a significantly smaller Frobenius loss. The advantage of the

distributionally robust estimators relative to the nominal sample covariance matrix diminishes with increasing

sample size n. The NLLW estimator is designed to be asymptotically optimal and, therefore, dominates the

other estimators for large sample sizes. However, it is suboptimal if training samples are scarce.

The insights of this synthetic experiment can be summarized as follows. Linear shrinkage estimators

are suitable for well-conditioned covariance matrices and small sample sizes, while the NLLW estimator is

preferable for large sample sizes, irrespective of the condition number. The distributionally robust estimators

perform better when the covariance matrix is ill-conditioned and training samples are scarce.

5.3. Minimum Variance Portfolio Selection

We consider the problem of constructing the minimum variance portfolio of p risky assets by solving the

convex program minw∈Rp{w⊤Σ0w : w⊤1 = 1} [22], where 1 denotes the p-dimensional vector of ones, and

Σ0 ∈ Sp++ stands for the covariance matrix of the asset returns over the investment horizon. The unique

optimal solution of this problem is given by w⋆ = Σ−1
0 1/1⊤Σ−1

0 1. In practice, however, the distribution

of the asset returns is unknown, and thus the covariance matrix Σ0 needs to be estimated from historical

data. If the chosen covariance estimator Σ̂ is invertible, then it is natural to use ŵ⋆ = Σ̂−11/1⊤Σ̂−11 as
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Figure 5. Sharpe ratios, means, and standard deviations induced by different covariance

estimators on the “48 Industry Portfolios” depending on the length k of an updating period.

an estimator for the minimum variance portfolio. This approach seems reasonable, provided that the asset

return distribution is stationary over the (past) estimation window and the (future) investment horizon.

In the next experiment, we assess the minimum variance portfolios induced by several covariance estimators

on the “48 Industry Portfolios” dataset from the Fama-French online library,3 which contains monthly returns

of 48 portfolios grouped by industry. Specifically, we adopt the following rolling horizon procedure from

January 1974 to December 2022. First, we estimate Σ0 from the historical asset returns within a rolling

estimation window of 50 months and construct the corresponding minimum variance portfolio. We then

compute the returns of this portfolio over the k months immediately after the estimation window. Finally,

the covariance estimators are recalibrated based on a new estimation window shifted ahead by k months, and

the procedure starts afresh. Some covariance estimators involve a hyperparameter, which we calibrate via

leave-one-out cross-validation on the 50 return samples in each estimation window. To this end, we assume

that the mixing weight α of the linear shrinkage estimator with shrinkage target 1
n Tr[Σ̂]In ranges from 10−5

to 1, whereas the radius ε of the uncertainty set ranges from 10−5 to 102 for the Kullback-Leibler and

Fisher-Rao covariance shrinkage estimators and from 10−10 to 108 for the Wasserstein covariance shrinkage

estimator. We discretize these parameter ranges into 50 logarithmically spaced candidate values and select the

one that induces the smallest portfolio variance. Given the selected hyperparameter, the covariance estimator

corresponding to the current estimation window is computed using all 50 data points. In the following, we

measure the quality of a given covariance estimator by Sharpe ratio and the mean and the standard deviation

of the portfolio returns generated by the above rolling horizon procedure over the backtesting period.

Figure 5 displays the Sharpe ratios, means, and standard deviations corresponding to different covariance

estimators as a function of the length k of an updating period. All shrinkage estimators produce lower standard

deviations and higher Sharpe ratios than the sample covariance matrix. Even though the mean portfolio

returns of the sample covariance matrix are—on average—similar to those of the shrinkage estimators, they

change rapidly with k, which is troubling for investors who need to select k before seeing the results of

the backtest. The distributionally robust estimators proposed in this paper outperform the other shrinkage

estimators in terms of mean returns and Sharpe ratios for most choices of k, and the Wasserstein covariance

shrinkage estimator results in the globally highest Sharpe ratio. However, the Kullback-Leibler and Fisher-

Rao covariance shrinkage estimators result in slightly higher means and standard deviations.

5.4. Linear and Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) seeks to predict a label y ∈ {0, 1} from a feature vector z ∈ Rp

under the assumption that z|y ∼ N (µy,Σy) for every y ∈ {0, 1}. If the mean µy, the covariance matrix Σy

as well as the marginal class probability py are known for all y ∈ {0, 1}, then the Bayes-optimal classifier

predicts y as a solution of miny∈{0,1}(z−µy)Σ
−1
y (z−µy)+log det(Σy)−2 log(py). Linear discriminant analysis

3https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 3. Mean (standard error) of the LDA and QDA accuracy based on 100 independent

permutations of the underlying dataset

Dataset Empirical Linear NLLW Wasserstein Kullback-Leibler Fisher-Rao

LDA
Banknote 0.9751(0.0005) 0.9754(0.0005) 0.9510(0.0011) 0.9761(0.0005) 0.9763(0.0005) 0.9759(0.0005)

Cancer 0.9520(0.0011) 0.9365(0.0015) 0.8902(0.0015) 0.9520(0.0011) 0.8874(0.0043) 0.9515(0.0013)

QDA
Banknote 0.9854(0.0005) 0.9839(0.0005) 0.9877(0.0004) 0.9854(0.0005) 0.9853(0.0005) 0.9854(0.0005)

Cancer 0.9418(0.0012) 0.8945(0.0027) 0.6320(0.0052) 0.9418(0.0012) 0.9451(0.0013) 0.9414(0.0016)

(LDA) operates under the additional assumption that Σ0 = Σ1. The decision boundaries of the resulting

LDA and QDA classifiers are thus given by linear hyperplanes and quadratic hypersurfaces, respectively [20].

In the last experiment, we use LDA and QDA to address the breast cancer detection [68] and banknote

authentication [39] problems from the UCI Machine Learning Repository. As the distribution governing y

and z is unobservable, we replace the unknown class probabilities py and class means µy by the empirical

frequencies and sample average estimators, respectively, and we use different shrinkage estimators for the

unknown covariance matrices Σy. All tested shrinkage estimators use the debiased empirical covariance

matrix as the nominal estimator. QDA constructs a separate covariance estimator for each class y that only

uses class-y samples, whereas LDA pools all samples to construct a single joint covariance estimator.

We use 50% of each dataset for training and the rest for testing. The hyperparameters ε (for the distribu-

tionally robust shrinkage estimators) and α (for the linear shrinkage estimator) are selected by the holdout

method with a validation set comprising 20% of the training data. The quality of a covariance estimator is

then measured by the accuracy (i.e., the proportion of correct predictions) of the resulting LDA and QDA

classifiers. Table 3 reports the means and standard errors of the accuracy achieved by different covariance

estimators. We observe that shrinking the empirical covariance estimator can improve the performance of

LDA and QDA, and that nonlinear shrinkage methods outperform the linear shrinkage method across all

experiments. The Kullback-Leibler covariance shrinkage estimator consistently performs well. QDA based

on the NLLW estimator attains the highest accuracy on the banknote authentication dataset but performs

poorly on the breast cancer dataset. On the other hand, the distributionally robust covariance estimators

are consistently on par with or better than the empirical and the linear shrinkage estimator. Note that the

best-performing distributionally robust shrinkage estimator changes with the dataset. This highlights the

usefulness of our approach, which results in a zoo of complementary covariance shrinkage estimators.
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Appendix

The appendix is organized as follows. In Appendix A, we prove Theorem 1 and derive basic properties of γ⋆

and x⋆i , which will be used in Appendix B to establish the computational, structural and statistical properties

of the distributionally robust estimators. Appendices C and D verify Assumptions 1 and 2 for all divergences

in Table 1, respectively. As a byproduct, we derive a Riemannian generalization of Sion’s minimax theorem.

The insights of Appendices C and D are used in Appendix E to prove the results of Section 4.

Appendix A. Proof of Theorem 1

A.1. Proof of Proposition 2

We first reduce problem (PMat), which optimizes over matrices, to an equivalent problem of the form

inf
x∈Rp

+

∥x∥22

s. t.

p∑
i=1

d (xi, x̂i) ≤ ε

x1 ≤ · · · ≤ xp,

(P↑
Vec)

which merely optimizes over vectors. Here, x̂ ∈ Rp
+ denotes as usual the vector whose i-th entry x̂i is the i-th

smallest eigenvalue of the nominal covariance matrix Σ̂. We therefore have x̂↑ = x̂. To simplify the subse-

quent discussions, for any minimization problem designated by “P,” say, we use “Min(P),” “Argmin(P)” and

“Fea(P)” to denote its minimum/infimum, the set of its optimal solutions and its feasible region, respectively.

The following proposition illuminates the relationship between problems (PMat) and (P↑
Vec).

Proposition 9 (Reduction of (PMat) to (P↑
Vec)). If D is a spectral divergence in the sense of Assumption 2,

then the following assertions hold.

(i) Problem (PMat) is feasible if and only if problem (P↑
Vec) is feasible.

(ii) Fea (PMat) is compact if and only if Fea (P↑
Vec) is compact.

(iii) For any x⋆ ∈ Argmin (P↑
Vec), the matrix “V Diag(x⋆)“V ⊤ is an optimal solution to problem (PMat).

(iv) For any Σ⋆ ∈ Argmin (PMat), the vector λ(Σ⋆) is an optimal solution to problem (P↑
Vec).

(v) Min (PMat) = Min (P↑
Vec).

Proof of Proposition 9. Select any Σ ∈ Fea (PMat), and use Σ = VΣ Diag(λ(Σ))V ⊤
Σ to denote its eigenvalue

decomposition. By our notational conventions, we have 0 ≤ λ1(Σ) ≤ · · · ≤ λp(Σ). We then obtain

p∑
i=1

d (λi(Σ), x̂i) = D (Diag(λ(Σ)),Diag(x̂)) ≤ D
Ä“V ⊤VΣ Diag(λ(Σ))V ⊤

Σ
“V ,Diag(x̂)

ä
=D
Ä
VΣ Diag(λ(Σ))V ⊤

Σ ,“V Diag(x̂)“V ⊤
ä
= D(Σ, Σ̂) ≤ ε,

(12)

where the first equality follows from Assumption 2(b), the first inequality follows from Assumption 2(c), and

the second equality follows from Assumption 2(a). This implies that λ(Σ) ∈ Fea (P↑
Vec).

Next, select any x ∈ Fea (P↑
Vec) such that “V Diag(x)“V ⊤ ∈ Sp+. By Assumptions 2(a) and (b), we thus have

D(“V Diag(x)“V ⊤, Σ̂) = D(“V Diag(x)“V ⊤,“V Diag(x̂)“V ⊤) = D(Diag(x),Diag(x̂)) =

p∑
i=1

d(xi, x̂i) ≤ ε, (13)

where the three equalities follow from the eigenvalue decomposition of Σ̂, Assumption 2(a) and Assump-

tion 2(b), respectively. This implies that “V Diag(x)“V ⊤ ∈ Fea (PMat). In summary, we have thus shown that

problem (PMat) is feasible if and only if problem (P↑
Vec) is feasible. This establishes assertion (i).

The first part of the proof of assertion (i) actually implies that λ(Fea (PMat)) ⊆ Fea (P↑
Vec). Conversely,

the second part of the proof of assertion (i) implies that Fea (P↑
Vec) ⊆ λ(Fea (PMat)). To see this, recall that
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any x feasible in (P↑
Vec) satisfies x = λ(“V Diag(x)“V ⊤). As “V Diag(x)“V ⊤ is feasible in (PMat), we may indeed

conclude that x ∈ λ(Fea (PMat)). As the eigenvalue map λ is continuous [4, Corollary VI.1.6], λ(Fea (PMat))

is compact if and only if Fea (P↑
Vec) is compact. This observation establishes assertion (ii).

As for assertion (iii), assume that Argmin (P↑
Vec) ̸= ∅ for otherwise the claim is trivial. Choose then any

x⋆ ∈ Argmin (P↑
Vec), and note that “V Diag(x⋆)“V ⊤ ∈ Fea (PMat) by virtue of (13). It remains to be shown that“V Diag(x⋆)“V ⊤ ∈ Argmin (PMat). Suppose, for the sake of contradiction, that there is Σ′ ∈ Fea (PMat) with

∥Σ′∥2F <
∥∥∥“V Diag(x⋆)“V ⊤

∥∥∥2
F
,

and let Σ′ = V ′ Diag(λ(Σ′))V ′⊤ be the eigenvalue decomposition of Σ′ for some V ′ ∈ O(p). By (12), we then

have λ(Σ′) ∈ Fea (P↑
Vec), which contradicts the optimality of x⋆ in problem (P↑

Vec) because

∥λ(Σ′)∥22 = ∥Σ′∥2F <
∥∥∥“V Diag(x⋆)“V ⊤

∥∥∥2
F
= ∥x⋆∥22 .

Therefore, “V Diag(x⋆)“V ⊤ ∈ Argmin (PMat). This proves assertion (iii).

As for assertion (iv), assume that Argmin (PMat) ̸= ∅ for otherwise the claim is trivial. Choose then any

Σ⋆ ∈ Argmin (PMat), and note that λ(Σ⋆) ∈ Fea (P↑
Vec) by virtue of (12). It remains to be shown that

λ(Σ⋆) ∈ Argmin (P↑
Vec). Suppose, for the sake of contradiction, that there is x′ ∈ Fea (P↑

Vec) with

∥x′∥22 < ∥λ(Σ⋆)∥22 .

By (13), we then have “V Diag(x′)“V ⊤ ∈ Fea (PMat), which contradicts the optimality of Σ⋆ in (PMat) because∥∥∥“V Diag(x′)“V ⊤
∥∥∥2
F
= ∥x′∥22 < ∥λ(Σ⋆)∥22 = ∥Σ⋆∥2F .

Therefore, λ(Σ⋆) ∈ Argmin (P↑
Vec). This proves assertion (iv).

Finally, in order to prove assertion (v), we need to show that any Σ ∈ Fea (PMat) corresponds to some x ∈
Fea (P↑

Vec) with the same objective function value and vice versa. However, this follows in a straightforward

manner from the proof of assertion (i). Details are omitted for brevity. □

Proposition 9(iii) and the discussion after Assumption 1 imply that if x⋆ ∈ Argmin (P↑
Vec), then the matrix“V Diag(x⋆)“V ⊤ is optimal in (4). We can thus compute robust covariance estimators by solving problem (P↑

Vec).

Although problem (P↑
Vec) optimizes over a significantly lower-dimensional search space than (PMat), it

still involves p − 1 ordering constraints x1 ≤ · · · ≤ xp. This is undesirable because each of these ordering

constraints necessitates a separate dual variable. We now show that problem (P↑
Vec) is in fact equivalent to

problem (PVec), which suppresses all ordering constraints, and which is repeated below for convenience.

inf
x∈Rp

+

∥x∥22

s. t.

p∑
i=1

d (xi, x̂i) ≤ ε.
(PVec)

More precisely, we will show that relaxing the ordering constraints preserves the optimal value and even the

minimizers of problem (P↑
Vec)—up to simple rearrangements. Our proof will critically rely on Assumption 2

and on the following lemma, which shows that if x feasible is in (PVec), then x
↑ is feasible in (P↑

Vec).

Lemma 5. If Assumption 2 holds, then we have

p∑
i=1

d(x↑i , y
↑
i ) ≤

p∑
i=1

d(xi, y
↑
i ) ∀x, y ∈ Rp

+.

If the right-hand side is finite, then the above inequality collapses to an equality if and only if x↑ = x.
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Proof of Lemma 5. Let Px ∈ O(p) be a permutation matrix with Diag(x) = Px Diag(x↑)P⊤
x . We then have

p∑
i=1

d(x↑i , y
↑
i ) = D

(
Diag(x↑),Diag(y↑)

)
≤ D

(
Px Diag(x↑)P⊤

x ,Diag(y↑)
)
= D

(
Diag(x),Diag(y↑)

)
=

p∑
i=1

d(xi, y
↑
i ),

where the first and last equalities follow from Assumption 2(b), the inequality follows from Assumption 2(c),

and the second equality from the definition of Px. This proves the first claim.

Assume now that the right-hand side of the above expression is finite. Hence, D(Px Diag(x↑)P⊤
x ,Diag(y↑))

is also finite. Assumption 2(c) then implies that the equality holds if and only if Diag(x↑) = Px Diag(x↑)P⊤
x =

Diag(x), that is, if and only if x↑ = x. This proves the second claim. □

We are now ready to prove the equivalence of (P↑
Vec) and (PVec).

Proposition 10 (Equivalence of (P↑
Vec) and (PVec)). If Assumption 2 holds, then problems (P↑

Vec) and (PVec)

share the same optimal value as well as the same set of minimizers.

Proof. We only show that Argmin (P↑
Vec)=Argmin (PVec). This readily implies that the optimal values match.

To prove the inclusion Argmin (P↑
Vec) ⊆ Argmin (PVec), select any x⋆ ∈ Argmin (P↑

Vec). Hence, x⋆ ∈
Fea (PVec). Suppose now for the sake of argument that there exists x′ ∈ Fea (PVec) with ∥x′∥22 < ∥x⋆∥22. By

Lemma 5, which applies because x̂ = x̂↑, we may thus conclude that x′
↑ ∈ Fea (P↑

Vec). However, this contra-

dicts the optimality of x⋆ in problem (P↑
Vec) because ∥x′

↑∥22 = ∥x′∥22 < ∥x⋆∥22. Therefore, x⋆ ∈ Argmin (PVec).

To prove the reverse inclusion Argmin (P↑
Vec) ⊇ Argmin (PVec), select any x

⋆ ∈ Argmin (PVec). We claim

that x⋆↑ = x⋆. Suppose for the sake of contradiction that x⋆↑ ̸= x⋆. This readily guarantees that not all

components of x⋆ are equal. Since x⋆ ∈ Fea (PVec) and x̂ = x̂↑, Lemma 5 then implies that

p∑
i=1

d((x⋆↑)i, x̂i) <

p∑
i=1

d(x⋆i , x̂i) ≤ ε,

that is, x⋆↑ satisfies the constraint in (PVec) strictly. In the following we use ep to denote the p-th standard

basis vector in Rp. As x⋆ ̸= x⋆↑ ∈ Rp
+ is not constant, there is j ∈ {1, . . . , p} with x⋆j > 0. This readily implies

that (x⋆↑)p ≥ x⋆j > 0. As d is continuous by virtue of Assumption 2(b) and as x⋆↑ strictly satisfies the explicit

constraint in (PVec), the perturbed vector x⋆↑ − ϵep remains feasible in (PVec) for all sufficiently small ϵ > 0.

In addition, ∥x⋆↑ − ϵep∥2 < ∥x⋆↑∥2 = ∥x⋆∥2 for all sufficiently small ϵ > 0. This contradicts the optimality

of x⋆. Hence, we may conclude that x⋆ = x⋆↑. Therefore, x⋆ is feasible in (P↑
Vec). Since (PVec) is a relaxation

of problem (P↑
Vec) (with the same objective function), we may thus conclude that x⋆ ∈ Argmin (P↑

Vec). □

With these results in place, the proof of Proposition 2 is now immediate.

Proof of Proposition 2. The proof is an immediate consequence of Propositions 9 and 10. □

A.2. Proof of Proposition 3

The next lemma shows that any solution of problem (PVec) shrinks x̂ towards the origin. This will imply

that our proposed distributionally robust estimators constitute shrinkage estimators.

Lemma 6 (Eigenvalue shrinkage). If Assumptions 2 and 3(a) hold and x⋆ solves problem (PVec), then we

have x⋆i ∈ dom(d( · , x̂i)) and x
⋆
i ≤ x̂i for all i = 1, . . . , p.
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Proof of Lemma 6. Select any x⋆ ∈ Argmin (PVec). As x⋆ ∈ Fea (PVec), it is clear that x
⋆
i ∈ dom(d( · , x̂i)) for

all i = 1, . . . , p. Next, suppose that x⋆j > x̂j for some j = 1, . . . , p, and define x̃ ∈ Rp
+ through

x̃i =

{
x̂j if i = j,

x⋆i if i ̸= j.

Recall now that if Assumption 2(b) holds, then d constitutes a spectral divergence on R+. Assumption 3(a)

further implies that (x̂j , x̂j) ∈ dom(d). Hence, d(x̂j , x̂j) = 0 < d(x⋆j , x̂j), which ensures that x̃ ∈ Fea (PVec).

However, from the construction of x̃ it is evident that ∥x̃∥22 < ∥x⋆∥22, which contradicts the optimality of x⋆

in (PVec). Thus, we have x⋆i ≤ x̂i for all i = 1, . . . , p. This observation completes the proof. □

Lemma 6 allows us to prove the existence and uniqueness of the proposed robust covariance estimators.

Proposition 11 (Existence and uniqueness of optimal solutions). If Assumptions 2, 3 and 4 hold, then

problems (PVec), (P↑
Vec) and (PMat) admit a unique optimal solution. In addition, if Assumptions 1, 2, 3

and 4 hold, then there exists a unique distributionally robust estimator that solves problem (3).

Proof of Proposition 11. Suppose first that only Assumptions 2, 3 and 4 hold. Lemma 6 then implies that

problem (PVec) has the same set of optimal solutions as the following variant of (PVec) with box constraints

inf
x∈Rp

∥x∥22

s. t.

p∑
i=1

d (xi, x̂i) ≤ ε

0 ≤ xi ≤ x̂i ∀i = 1, . . . , p.

(P′
Vec)

Note that problem (P′
Vec) is feasible due to Assumption 3(a), which posits that d(x̂i, x̂i) = 0 for all i = 1, . . . , p.

Next, we show that the feasible region of (P′
Vec) is compact. To this end, note that d(xi, x̂i) is continuous

in xi on the interval [0, x̂i] for every i = 1, . . . , p. Indeed, continuity trivially holds if x̂i = 0, in which

case [0, x̂i] collapses to a point. Otherwise, if x̂i > 0, then continuity follows from Assumption 2(b). This

readily implies that the feasible region of (P′
Vec) is closed and—thanks to the box constraints—also compact.

The solvability of problem (P′
Vec) thus follows from Weierstrass’ maximum theorem, which applies because

the objective function is continuous. Assumption 4 further implies that d(xi, x̂i) is convex in xi on [0, x̂i] for

all i = 1, . . . , p, which implies that the feasible region of (P′
Vec) is convex. The uniqueness of the optimal

solution x⋆ thus follows from the strong convexity of the objective function. This shows that problem (PVec)

has a unique optimal solution. The other claims immediately follow from Propositions 1, 9 and 10. □

From now on we use db( · ) as a notational shorthand for the function d( · , b) for any fixed b ≥ 0.

Proposition 12 (Solution of problem (PVec)). If Assumptions 2, 3 and 4 hold, then the unique minimizer x⋆

of problem (PVec) has the following properties. If x̂i = 0, then x⋆i = 0, and if x̂i > 0, then x⋆i ∈ (0, x̂i) and

0 = 2x⋆i + γ⋆d′x̂i
(x⋆i ), (14)

where γ⋆ is a solution of the nonlinear equation
∑p

i=1 d(s(γ
⋆, x̂i), x̂i)− ε = 0.

The following lemma shows that db is strictly decreasing on [0, b], which will be used to prove Proposition 12.

Lemma 7 (Derivative of db). If Assumptions 2 and 4 hold, then we have

d′b(a) ≤ −d(a, b)
b− a

< −d(a, b)
b

< 0 ∀a ∈ (0, b), ∀b > 0.

Proof of Lemma 7. Select any b > 0. As d( · , b) is finite and convex on [0, b] thanks to Assumption 4, we have

0 = d(b, b) ≥ d(a, b) + (b− a) d′b(a) ∀a ∈ (0, b).

The desired inequality then follows from an elementary rearrangement. □
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Proof of Proposition 12. Lemma 6 allows us to rewrite problem (PVec) equivalently as

min
x∈C

∥x∥22

s. t.

p∑
i=1

d (xi, x̂i) ≤ ε,
(P′′

Vec)

where C = C1 × · · · × Cp with Ci = [0, x̂i] ∩ dom(dx̂i
) for each i = 1, . . . , p. Note that the objective and the

constraint function adopt finite values on C. By Proposition 11, problem (P′′
Vec) has a unique minimizer x⋆, and

by Lemma 6 we have x⋆i = 0 for all i with x̂i = 0. For such indices i, d(0, 0) = d(x̂i, x̂i) = 0 by Assumption 3(a).

By removing the corresponding decision variables from (P′′
Vec) and focusing on the optimization problem in

the remaining variables, we can therefore assume without loss of generality that x̂i > 0 for all i = 1, . . . , p.

Hence, problem (P′′
Vec) can be viewed as an ordinary convex program in the sense of [52, Section 28].

Following [52, Section 28], we define the Lagrangian L : R× Rp → R of problem (P′′
Vec) through

L(γ, x) =


∥x∥22 + γ(

∑p
i=1 d(xi, x̂i)− ε) if x ∈ C, γ ≥ 0,

−∞ if x ∈ C, γ < 0,

+∞ if x ̸∈ C.

By [52, Corollary 28.2.1 and Theorem 28.3], problem (P′′
Vec) is thus equivalent to the minimax problem

min
x∈Rp

sup
γ∈R

L(γ, x) = max
γ∈R

min
x∈Rp

L(γ, x).

Specifically, the dual maximization problem on the right-hand side is solvable, and every maximizer γ⋆ ≥ 0

gives rise to a saddle point (γ⋆, x⋆) of the minimax problem. Next, we prove that γ⋆ > 0. Suppose for the

sake of contradiction that γ⋆ = 0. Note first that x⋆ ∈ C for otherwise problem (P′′
Vec) would be infeasible,

thus contradicting the feasibility of x̂. Hence, we find L(γ⋆, x⋆) = L(0, x⋆) = ∥x⋆∥22. If x⋆i > 0 for some i, then

0 < ∥x⋆∥22 = L(0, x⋆) ≤ L(0, x) = ∥x∥22 ∀x ∈ C,

where the second inequality holds because (0, x⋆) is a saddle point. However, the discussion after Assumption 4

implies that dom(dx̂i
) either equals R+ or R++ for every i = 1, . . . , p. Hence, we have

∏p
i=1(0, x̂i] ⊆ C, that

is, C contains points that are arbitrarily close to 0. This leads to the contradiction

0 = inf
x∈C

∥x∥22 ≥ ∥x⋆∥22 > 0.

We may thus conclude that if γ⋆ = 0, then x⋆i = 0 for all i, that is, x⋆ = 0. However, this contradicts

Assumption 3(b), which implies that 0 ̸∈ Fea (PVec). In summary, this shows that γ⋆ > 0.

Next, we note that for any dual optimal solution γ⋆ > 0, the minimization problem

min
x∈Rp

L(γ⋆, x) = min
x∈C

∥x∥22 + γ⋆

(
p∑

i=1

d(xi, x̂i)− ε

)
(15)

admits a unique optimal solution, and by [52, Corollary 28.1.1] this minimizer must coincide with the unique

optimal solution x⋆ of problem (P′′
Vec). Given γ⋆, we can thus solve (15) instead of (P′′

Vec). This is attractive

from a computational point of view because C is rectangular, whereby problem (15) can be simplified to

−εγ⋆ +
p∑

i=1

min
xi∈Ci

{
x2i + γ⋆d(xi, x̂i)

}
= −εγ⋆ +

p∑
i=1

min
xi∈[0,x̂i]

{
x2i + γ⋆d(xi, x̂i)

}
.

Therefore, it suffices to solve the following simple univariate minimization problem for each i = 1, . . . , p.

min
xi∈[0,x̂i]

x2i + γ⋆d(xi, x̂i) (16)

If x̂i = 0, then (0, 0) ∈ dom(d) by Assumption 3(a), and hence d(0, 0) = d(x̂i, x̂i) = 0. In this case, x⋆i = 0 is

the only feasible—and thus unique optimal—solution of (16). Assume next that x̂i > 0. In this case we need

to prove that x⋆i falls within the open interval (0, x̂i) and satisfies (14). We will first show that x⋆i > 0. From

the discussion after Assumption 4 we know that dx⋆
i
can evaluate to +∞ only at 0. If dx̂i

(0) = +∞, then we
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trivially have x⋆i > 0. Assume next that dx̂i
(0) < +∞. By Assumption 2(b), dx̂i

is continuous and dx̂i
(0) > 0.

There exists a threshold δ > 0 such that dx̂i
(a) ≥ δ for all sufficiently small a ∈ [0, x̂i]. In addition, as the

function a2 + γ⋆d(a, x̂i) is convex and differentiable in a by virtue of Assumption 4, we have

02 + γ⋆d(0, x̂i) ≥ a2 + γ⋆d(a, x̂i) + (2a+ γ⋆d′x̂i
(a))(0− a)

> a2 + γ⋆d(a, x̂i)− 2a2 +
aγ⋆d(a, x̂i)

x̂i

≥ a2 + γ⋆d(a, x̂i)− 2a2 +
aγ⋆δ

x̂i

for all sufficiently small a ≥ 0. Here, the second inequality follows from Lemma 7, and the third inequality

holds because dx̂i(a) ≥ δ for all sufficiently small a ≥ 0. This reasoning implies that

γ⋆d(0, x̂i) > a2 + γ⋆d(a, x̂i)− 2a2 +
aγ⋆δ

x̂i
> a2 + γ⋆d(a, x̂i) (17)

for all sufficiently small a ≥ 0. Thus, small a > 0 are strictly preferable to 0, that is, x⋆i > 0.

Next, we prove that x⋆i < x̂i. As the differentiable function db(a) is non-negative and attains its minimum 0

at a = b, we may conclude that its derivative d′b(a) converges to 0 as a tends to b. For any a < b sufficiently

close to b we thus have (b− a)(2a+ γ⋆d′b(a)) > 0. As a2 + γ⋆d(a, b) is convex in a on [0, b], this ensures that

b2 + γ⋆d(b, b) ≥ a2 + γ⋆d(a, b) + (b− a)(2a+ γ⋆d′b(a)) > a2 + γ⋆d(a, b).

Hence, any a < b sufficiently close to b is strictly preferable to b. Setting b = x̂i, we thus find x⋆i < x̂i.

Finally, note that since x⋆i ∈ (0, x̂i), the constraints of problem (16) are not binding at optimality. Thus,

the minimizer of (16) is uniquely determined by the problem’s first-order optimality condition (14).

It remains to be shown that γ⋆ is unique. As 0 ̸∈ Fea (PVec) thanks to Assumption 3(b), there exists at

least one i = 1, . . . , p with x⋆i > 0, and hence x̂i > 0. Since dx̂i is differentiable on R++, equation (14) implies

γ⋆ = − 2x⋆i
d′x̂i

(x⋆i )
.

Hence, γ⋆ is unique because x⋆i is unique. Note also that γ⋆ is the Lagrange multiplier associated with the

constraint
∑p

i=1 d(xi, x̂i) ≤ ε in problem (P′′
Vec). As strong duality holds and γ⋆ > 0, we have

p∑
i=1

d(x⋆i , x̂i)− ε = 0

by complementary slackness. Using the definition (8) of the eigenvalue map s, we then obtain

p∑
i=1

d(s(γ⋆, x̂i), x̂i)− ε = 0.

This observation completes the proof. □

A.2.1. Properties of s and γ⋆

We first provide a detailed analysis of the nonlinear equation that defines the eigenvalue map s.

Lemma 8 (Properties of s). If Assumptions 2 and 4 hold, then the the following hold.

(i) If γ > 0 and b > 0, then the equation 0 = 2a+ γd′b(a) admits a unique solution in (0, b). Hence, the

eigenvalue map s(γ, b) is well-defined on R2
+.

(ii) If b > 0, then sb(γ) = s(γ, b) is continuous and strictly increasing on R+ and differentiable on R++.

(iii) If b > 0, then limγ↓0 sb(γ) = 0 and limγ→∞ sb(γ) = b.

Recall that, for and fixed γ > 0, the function sγ(b) shrinks the input b in the sense that sγ(b) ≤ b. Lemma 8

further shows that, for any fixed b > 0, sb(γ) strictly increases from 0 to b as γ grows. Therefore, we can

interpret γ as an inverse shrinkage intensity.
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Proof of Lemma 8. Assertion (i) follows directly from the proof of Proposition 12 and is thus not repeated.

Next, we prove assertion (ii). Recall from Assumption 4 that db is twice continuously differentiable on R++.

Thus, the function H(γ, a) = 2a + γd′b(a) is continuously differentiable on R2
++. Assumption 4 further

stipulates that db is convex on [0, b]. Hence, H(γ, a) is strictly increasing in a in the sense that

∂H(γ, a)

∂a
= 2 + γd′′b (a) ≥ 2 > 0 ∀a ∈ (0, b].

As sb(γ) ∈ (0, b) by assertion (i), the implicit function theorem ensures that sb(γ) is differentiable (and in

particular continuous) at any γ > 0. It remains to be shown that sb(γ) is continuous at 0. Given any ϵ > 0

and as sb(0) = 0 by definition, we thus need to show that there is δ > 0 such that sb(γ) ≤ ϵ for all γ ∈ [0, δ].

As sb(γ) ∈ (0, b) for all γ, b > 0, we may assume without loss of generality that ϵ ∈ (0, b). By Lemma 7, we

have d′b(ϵ) < 0, which guarantees that δ = −2ϵ/d′b(ϵ) is positive. For any γ ∈ [0, δ], we thus obtain

sb(γ) = −γd
′
b(sb(γ))

2
≤ ϵd′b(sb(γ))

d′b(ϵ)
,

where the equality follows from the definition of sb in (8), and the inequality follows from the definition

of δ. This confirms that sb(γ) ≤ ε. Suppose to the contrary that sb(γ) > ϵ. Then the above inequality

implies d′b(sb(γ)) < d′b(ϵ). As d′b is non-decreasing by virtue of the convexity of db, this in turn leads to the

contradiction sb(γ) > ε. Thus, sb(γ) ≤ ε for all γ ∈ [0, δ]. We conclude that sb(γ) is indeed continuous at 0.

To show that sb(γ) is strictly increasing on R++, recall that sb(γ) is differentiable on R++. We may thus

differentiate both sides of the equation 0 = 2sb(γ) + γd′b(sb(γ)) with respect to γ to obtain

0 = 2s′b(γ) + d′b(sb(γ)) + γd′′b (sb(γ))s
′
b(γ).

Rearranging terms then yields

s′b(γ) = − d′b(sb(γ))

2 + γd′′b (sb(γ))
, (18)

which is strictly positive because d′b(sb(γ)) < 0 thanks to Lemma 7 and d′′b (sb(γ)) ≥ 0 thanks to the convexity

of db on [0, b]. Hence, sb(γ) is strictly increasing on R+. This completes the proof of assertion (ii).

It remains to prove assertion (iii). The continuity of sb(γ) at γ = 0 has already been established in

assertion (ii). As sb(γ) ∈ (0, b) is strictly increasing in γ, it is clear that, as γ tends to infinity, sb(γ) has a

well-defined limit not larger than b. By the definition of sb in (8), we further have

2sb(γ)

γ
+ d′b(sb(γ)) = 0 ∀γ > 0.

Driving γ to infinity and recalling that sb(γ) ∈ (0, b) for all γ > 0 thus shows that

0 = lim
γ→∞

d′b(sb(γ)) = d′b

Å
lim
γ→∞

sb(γ)

ã
,

where the second equality follows from the continuity of d′b on R++. Note that limγ→∞ sb(γ) exists and falls

within the interval (0, b] because sb is a strictly increasing function mapping R+ to (0, b). These arguments

imply that the limit must be a root of d′b within (0, b]. Lemma 7 implies that d′b has no root in the open

interval (0, b). We may thus conclude that limγ→∞ sb(γ) must coincide with b. As a sanity check, one readily

verifies that 0 = d′b(b) because db(a) attains its minimum of 0 at a = b. Thus, assertion (iii) follows. □

We now prove that the function F (γ) =
∑p

i=1 d(s(γ, x̂i), x̂i)− ε has one and only one root. By the proof

of Proposition 12, this root must coincide with the unique optimal solution γ⋆ of the problem dual to (PVec).

Lemma 9. If Assumptions 2, 3 and 4 hold, then the equation F (γ) = 0 has a unique root, which is positive.

Proof of Lemma 9. Recall that s(γ, 0) = 0 by the definition of s in (8). Recall also that if x̂i = 0, then

d(s(γ, x̂i), x̂i) = d(0, 0) = 0 by virtue of Assumptions 2 and 3(a). Therefore, vanishing components of x̂ do

not contribute to the function F (γ). In addition, Assumption 3(b) ensures that there exists at least one

i ∈ {1, . . . , p} with x⋆i > 0 and hence also with x̂i > 0. For these reasons, we henceforth assume without loss
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of generality that x̂i > 0 for all i = 1, . . . , p. By Lemma 8(ii), s(γ, x̂i) constitutes a continuous real-valued

function of γ ∈ R+. Similarly, by Assumption 2(b), d(xi, x̂i) constitutes a continuous extended real-valued

function of xi ∈ R+. Therefore, the extended real-valued function F (γ) is continuous on R+. Assumption 3(b)

implies that F (0) =
∑p

i=1 d(0, x̂i) − ε > 0. Recall now from Lemma 8(iii) that s(γ, x̂i) converges to x̂i as γ

tends to infinity. By the continuity of d(xi, x̂i) in xi we thus have

lim
γ→∞

F (γ) =

p∑
i=1

d(x̂i, x̂i)− ε = −ε < 0.

All of this implies that the equation F (γ) = 0 has at least one positive root. In the remainder we prove that

this root is unique. As x̂i > 0, Lemma 8 implies that s(γ, x̂i) strictly increases from 0 (at γ = 0) to x̂i (as γ

tends to infinity). Lemma 7 further implies that dx̂i
is strictly decreasing on [0, x̂i]. Thus, the composite

function d(s(γ, x̂i), x̂i) is strictly decreasing in γ for every i. This readily shows that F (γ) is strictly decreasing

in γ throughout R+, thus implying that the equation F (γ) = 0 has only one root. □

We are now ready to prove Proposition 3.

Proof of Proposition 3. The proof is a direct consequence of Propositions 11 and 12 and Lemmas 8 and 9. □

Appendix B. Proofs of Section 3.3

Proof of Proposition 4. In view of the proof of Lemma 9, it only remains to be shown that F (γ) is differentiable

at any γ > 0. Towards that end, recall that vanishing components of x̂ do not contribute to F (γ) such that

F (γ) =

p∑
i=1

d(s(γ, x̂i), x̂i)− ε =

p∑
i=1:
x̂i>0

d(s(γ, x̂i), x̂i)− ε.

For any fixed x̂i > 0, s(γ, x̂i) is differentiable with respect to γ ∈ R++ by Lemma 8(ii), and d(x, x̂i) is

differentiable with respect to x ∈ R++ by Assumption 4. Therefore, F (γ) is differentiable at any γ > 0. □

From the proof of Proposition 12 we know that the problem dual to (PVec) has a unique optimal solution γ⋆.

Thus, γ⋆ can be viewed as a function γ⋆(ε) of the radius ε > 0 of the divergence ball (2).

Lemma 10 (Monotonicity of γ⋆). If Assumptions 2, 3 and 4 hold, then γ⋆(ε) is non-increasing on (0, ε̄).

Proof of Lemma 10. The proof of Proposition 12 implies that γ⋆(ε) is the unique maximizer of the problem

dual to (PVec). By inverting its objective function, this problem can be recast as the minimization problem

min
γ>0

εγ +G(γ), (19)

where the function G : R++ → R is defined through

G(γ) = −
p∑

i=1:
x̂i>0

min
xi∈[0,x̂i]

{
x2i + γd(xi, x̂i)

}
= −

p∑
i=1:
x̂i>0

Ä
(sx̂i

(γ))
2
+ γdx̂i

(sx̂i
(γ))
ä
.

Note also that the non-negativity constraint on γ in (19) is strict because γ = 0 cannot be optimal, or, dually,

because the constraint in (PVec) must be binding at optimality for ε < ε̄. By construction, G(γ) constitutes

a pointwise maximum of multiple linear functions and is, therefore, convex. Next, select ε1, ε2 ∈ (0, ε̄] with

0 < ε1 < ε2, and introduce the notational shorthands γ1 = γ⋆(ε1) and γ2 = γ⋆(ε2). By the optimality of γ1
and γ2 in problem (19) at ε1 and ε2, there exist subgradients g1 ∈ ∂G(γ1) and g2 ∈ ∂G(γ2) satisfying the first-

order optimality conditions ε1 + g1 = 0 and ε2 + g2 = 0, respectively. Since G(γ) is convex, its subdifferential

is monotone, whereby (γ2− γ1)(g2− g1) ≥ 0. Together with the first-order optimality conditions, this implies

that (γ2 − γ1)(ε1 − ε2) ≥ 0. As ε1 < ε2, we may thus conclude that γ2 ≤ γ1. Hence, the claim follows. □
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Proof of Proposition 5. Note that x⋆i (ε) = s(γ⋆(ε), x̂i) for every ε ∈ (0, ε̄) thanks to Proposition 3, and recall

that x⋆i (ε̄) = 0 by definition. We aim to show that x⋆i (ε) is non-increasing on [0, ε̄] and that limε↑ε̄ x
⋆
i (ε) = 0.

To this end, note first that both claims are trivially satisfied if x̂i = 0, in which case x⋆i (ε) = 0 for all ε ∈ (0, ε̄)

thanks to Proposition 3 and our conventions that x⋆i (0) = x̂i and x
⋆
i (ε̄) = 0. Assume next that x̂i > 0. Recall

that γ⋆(ε) is non-increasing on (0, ε̄) thanks to Lemma 10, while sx̂i
(xi) = s(xi, x̂i) is strictly increasing

on R+ thanks to Lemma 8(ii), which applies because x̂i > 0. Therefore, x⋆i (ε) = s(γ⋆(ε), x̂i) is non-increasing

on (0, ε̄). We also have x⋆i (ε) ∈ (0, x̂i) for all ε ∈ (0, ε̄) thanks to Proposition 3, and we have x⋆i (0) = x̂i and

x⋆i (ε̄) = 0 by definition. All of this readily implies that x⋆i (ε) is non-increasing on [0, ε̄]. In order to prove that

limε↑ε̄ x
⋆
i (ε) = 0, note first that limε↑ε̄ x

⋆
i (ε) must exist because x⋆i (ε) is non-negative as well as non-increasing

in ε. Next, recall from Lemma 7 that the function dx̂i
(xi) = d(xi, x̂i) is strictly decreasing on (0, x̂i). In fact,

this monotonicity property extends to [0, x̂i] because dx̂i is continuous thanks to Assumption 2(b). We then

choose an arbitrary tolerance δ > 0 and assume without loss of generality that δ is smaller than the smallest

non-vanishing component of x̂. Next, consider a vector x ∈ Rp
+ defined through xi = 0 if x̂i = 0 and xi = δ

if x̂i > 0, i = 1, . . . , p, and set ε =
∑p

i=1 d(xi, x̂i). By construction, we have

ε =

p∑
i=1

d(xi, x̂i) <

p∑
i=1

d(0, x̂i) = ε̄,

where the strict inequality holds because x̂ has at least one strictly positive component and because d(xi, x̂i) <

d(0, x̂i) whenever x̂i > 0 thanks to the monotonicity properties of d established above. Hence, x is feasible

in PVec, and ε is consistent with Assumption 3(b). In addition, one readily verifies that the objective function

value of x satisfies ∥x∥22 ≤ pδ2. By the optimality of x⋆(ε) in PVec, we thus find

x⋆i (ε)
2 ≤ ∥x⋆(ε)∥22 ≤ pδ2 ∀i = 1, . . . , p.

Thus, for any sufficiently small δ > 0 there exists ε > 0 with x⋆i (ε) ≤
√
pδ. As x⋆i (ε) is non-increasing on [0, ε̄],

this implies indeed that limε↑ε̄ x
⋆
i (ε) = 0. It remains to be shown that X⋆ constitutes a shrinkage estimator.

This is now evident, however, because Σ̂ = “V Diag(x̂)“V ⊤ = “V Diag(x⋆(0))“V ⊤. □

Proof of Lemma 1. Throughout this proof we fix any γ > 0. We first aim to show that the function

K(b) =
1

b

∂d(s(γ, b), b)

∂a

is non-decreasing on R++. To this end, note that d(a, b) is twice continuously differentiable on R2
++ by

Assumption 5. Using the implicit function theorem as in Lemma 8, one can thus show that s(γ, b) is differ-

entiable with respect to b and that s(γ, b) ∈ (0, b) for every b > 0. Recall also that − 2
γ s(γ, b) =

∂d
∂a (s(γ, b), b)

by the definition of s in (8). Differentiating both sides of this equation with respect to b then yields

− 2

γ

∂s(γ, b)

∂b
=

d

db

Å
∂d(s(γ, b), b)

∂a

ã
=
∂2d(s(γ, b), b)

∂a∂b
+
∂2d(s(γ, b), b)

∂a2
∂s(γ, b)

∂b
. (20)

This in turn implies that

∂s(γ, b)

∂b
= −

Å
2

γ
+
∂2d(s(γ, b), b)

∂a2

ã−1
∂2d(s(γ, b), b)

∂a∂b
, (21)

which is well-defined because γ > 0 and d( · , b) is convex by Assumption 4. We then find

dK(b)

db
= − 1

b2
∂d(s(γ, b), b)

∂a
+

1

b

d

db

Å
∂d(s(γ, b), b)

∂a

ã
.

The second term on the right hand side of the above expression satisfies

1

b

d

db

Å
∂d(s(γ, b), b)

∂a

ã
= − 2

bγ

∂s(γ, b)

∂b
=

2

bγ

Å
2

γ
+
∂2d(s(γ, b), b)

∂a2

ã−1
∂2d(s(γ, b), b)

∂a∂b

=
2

b

(
∂2d(s(γ,b),b)

∂a∂b

2− 2s(γ,b)
∂d(s(γ,b),b)

∂a

∂2d(s(γ,b),b)
∂a2

)
=

1

b

(
∂d(s(γ,b),b)

∂a
∂2d(s(γ,b),b)

∂a∂b
∂d(s(γ,b),b)

∂a − s(γ, b)∂
2d(s(γ,b),b)

∂a2

)
,
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where the first and the second equalities follow from (20) and (21), respectively, and the third equality follows

from the defining equation of s in (8). Combining the last two equations finally yields

dK(b)

db
= − 1

b2
∂d(s(γ, b), b)

∂a

(
1−

b ∂2d(s(γ,b),b)
∂a∂b

∂d(s(γ,b),b)
∂a − s(γ, b)∂

2d(s(γ,b),b)
∂a2

)
.

Recall now that ∂d(a,b)
∂a < 0 for every a ∈ (0, b) thanks to Lemma 7 and that s(γ, b) ∈ (0, b) thanks to Lemma 8.

This implies that the derivative of K(b) is non-negative if and only if

∂2d(s(γ, b), b)

∂a∂b
≥ 1

b

Å
∂d(s(γ, b), b)

∂a
− s(γ, b)

∂2d(s(γ, b), b)

∂a2

ã
. (22)

Assumption 5 guarantees that (22) holds indeed for all b > 0. Hence, K(b) is a non-decreasing function.

We now prove the desired inequality. By the defining equation of s in (8) we have

−2γ b1 s(γ, b2) = b1
∂d(s(γ, b2), b2)

∂a
≥ b2

∂d(s(γ, b1), b1)

∂a
= −2γ b2 s(γ, b1)

for any b2 ≥ b1 > 0, where and inequality follows from the monotonicity of K established above. This implies

that s(γ, b2)/s(γ, b1) ≤ b2/b1 for all b1, b2 ∈ R++ with b2 ≥ b1. Hence, the claim follows. □

Proof of Proposition 7. Throughout the proof we use the shorthands x⋆i,n = λi(X
⋆
n) and x̂i,n = λi(Σ̂n) for all

i = 1, . . . , p and n ∈ N. By the strong consistency assumption, Σ̂n converges almost surely to Σ0. Fix now

temporarily a particular realization of the uncertainties, for which Σ̂n converges deterministically to Σ0. In

this case, x̂i,n converges to λi(Σ0) because the eigenvalue map λi is continuous [4, Corollary VI.1.6], and the

sequence {x⋆i,n}n∈N is bounded by Lemma 6. Thus, any convergent subsequence {x⋆i,nk
}k∈N satisfies

lim
k→∞

x⋆i,nk
∈ [0, lim

k→∞
x̂i,nk

] = [0, lim
n→∞

x̂i,n] = [0, λi(Σ0)].

In addition, we have

d(x⋆i,nk
, x̂i,nk

) ≤
p∑

j=1

d(x⋆j,nk
, x̂j,nk

) = D
Ä
X⋆

nk
, Σ̂nk

ä
≤ εnk

∀k ∈ N,

where the first equality holds because of Assumptions 2(a) and 2(b) and because X⋆
nk

and Σ̂nk
share the

same eigenvectors. The second inequality follows from Proposition 1(ii), which ensures that X⋆
nk

is feasible

in problem (PMat). As εnk
converges to 0 and as d is continuous on R+ × R++, the above implies that

d( lim
k→∞

x⋆i,nk
, λi(Σ0)) = d( lim

k→∞
x⋆i,nk

, lim
k→∞

x̂i,nk
) = lim

k→∞
d(x⋆i,nk

, x̂i,nk
) = 0.

Recall now from Assumption 2 that d satisfies the identity of indiscernibles. Thus we find limk→∞ x⋆i,nk
=

λi(Σ0). This shows that every convergent subsequence of the bounded sequence {x⋆i,n}n∈N must have the

same limit λi(Σ0). By [1, Exercise 2.5.5], the eigenvalue x⋆i,n therefore converges to λi(Σ0). This reasoning

applies to every uncertainty realization under which Σ̂n converges to Σ0. As Σ̂n converges almost surely

to Σ0, we have thus shown that x⋆i,n converges almost surely to λi(Σ0). This in turn implies that

P[ lim
n→∞

∥X⋆
n − Σ0∥F = 0] ≥P[ lim

n→∞

Ä
∥X⋆

n − Σ̂n∥F + ∥Σ̂n − Σ0∥F
ä
= 0]

=P[ lim
n→∞

Ä
∥x⋆n − x̂n∥2 + ∥Σ̂n − Σ0∥F

ä
= 0]

≥P[ lim
n→∞

Ä
∥x⋆n − λ(Σ0)∥2 + ∥λ(Σ0)− x̂n∥2 + ∥Σ̂n − Σ0∥F

ä
= 0] = 1,

where both inequalities hold thanks to the triangle inequality, the first equality follows from Theorem 1,

which ensures that X⋆
n and Σ̂n share the same eigenvectors, and the second equality exploits the almost sure

convergence of x⋆n and x̂n to λ(Σ0) established above and the almost sure convergence of Σ̂n to Σ0. This

shows that X⋆
n converges almost surely to Σ0 and therefore completes the proof. □
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From now on we use ∥X∥∗ to denote the nuclear norm of X ∈ Sp (i.e., the sum of all singular values

of X), which is the norm dual to the operator norm ∥X∥ (i.e., the largest singular value of X). The proof of

Proposition 8 relies on the following well-known result from high-dimensional statistics.

Lemma 11 ([67, Theorem 6.5]). Under the assumptions of Proposition 8, there exists a constant c0 that only

depends on the dimension p of the random vector ξ and satisfies

Pn
î
∥Σ̂n − Σ0∥ ≤ ρ(n, η)

ó
≥ 1− η

2

for every n ∈ N and η ∈ (0, 1), where

ρ(n, η) = c0σ
2

Ç
log η−1

n
+

…
log η−1

n

å
.

Proof of Proposition 8. For any divergence function D from Table 1 we will prove that there exist a con-

stant c > 0 and a function nmin(η) = O(log η−1) that may depend on P such that

Pn
î
D(Σ0, Σ̂n) ≤ c∥Σ0 − Σ̂n∥

ó
≥ 1− η

2
(23)

for every n ≥ nmin(η) and η ∈ (0, 1). Indeed, assuming that such an inequality holds, Lemma 11 and the union

bound imply that Pn[D(Σ0, Σ̂n) ≤ cρ(n, η)] ≥ 1− η. The claim then follows by setting εmin(n, η) = cρ(n, η).

Stein, Inverse Stein and Symmetrized Stein Divergences: Note that the sum of the Stein and

inverse Stein divergences equals twice the symmetrized Stein divergence. Recall also that all divergences are

non-negative. Thus, if the ball of radius ε with respect to the symmetrized Stein divergence contains Σ0 with

probability at least 1− η, then the ball of radius 2ε with respect to the Stein or inverse Stein divergence con-

tains Σ0 with probability at least 1−η. It thus suffices to focus on the symmetrized Stein divergence. Suppose

now that the smallest eigenvalue of Σ̂n is no smaller than half of the smallest eigenvalue of Σ0. As Σ0 ≻ 0,

this implies in particular that Σ̂n is positive definite and that Σ̂−1
n exists. Rewriting the symmetrized Stein

divergence as 1
2 Tr[(Σ

−1
0 − Σ̂−1

n )(Σ̂n − Σ0)], we may then use the matrix Hölder’s inequality to obtain

Tr[(Σ−1
0 − Σ̂−1

n )(Σ̂n − Σ0)] ≤ ∥Σ0 − Σ̂n∥∥Σ−1
0 − Σ̂−1

n ∥∗.

In the following we use xi = λi(Σ0) and x̂i,n = λi(Σ̂n) to denote i-th smallest population and sample

eigenvalues for i = 1, . . . , p, respectively. By the definitions of the nuclear and operator norms, we then have

∥Σ−1
0 − Σ̂−1

n ∥∗ ≤ p∥Σ−1
0 − Σ̂−1

n ∥

= pmax
¶
λp(Σ

−1
0 − Σ̂−1

n ),−λ1(Σ−1
0 − Σ̂−1

n )
©

≤ pmax
¶
λp(Σ

−1
0 )− λ1(Σ̂

−1
n ), λp(Σ̂

−1
n )− λ1(Σ

−1
0 )
©

= pmax

ß
1

x1
− 1

x̂p,n
,

1

x̂1,n
− 1

xp

™
≤ pmax

ß
1

x1
,

1

x̂1,n

™
≤ 2p

x1
,

where the first equality holds because the singular values of a symmetric matrix coincide with the absolute

values of the eigenvalues of that matrix. The second inequality follows from a classic result by Weyl, which

asserts that λ1(A+B) ≤ λ1(A)+λp(B) ≤ λp(A+B) for any A,B ∈ Sp, and the second equality holds because

λi(A
−1) = 1/λp−i+1(A) for any i = 1, . . . , p and A ∈ Sp++. The third inquality exploits our assumption that

all population and sample eigenvalues are strictly positive, and the last inequality follows from the assumption

that x̂1,n ≥ x1/2. We have thus shown that if x̂1,n ≥ x1/2, then D(Σ0, Σ̂n) ≤ p
x1
∥Σ0 − Σ̂n∥. Hence, we find

Pn
[
D(Σ0, Σ̂n) ≤

p

x1
∥Σ0 − Σ̂n∥

]
≥ Pn

[
x̂1,n ≥ x1

2

]
.

As x̂1,n ≥ x1 − ∥Σ0 − Σ̂n∥ by virtue of Weyl’s inequality and by Lemma 11, the last probability satisfies

Pn
[
x̂1,n ≥ x1

2

]
≥ Pn

[
∥Σ0 − Σ̂n∥ ≤ x1

2

]
≥ Pn

[
∥Σ0 − Σ̂n∥ ≤ ρ(n, η)

]
≥ 1− η

2
(24)



A GEOMETRIC UNIFICATION OF DISTRIBUTIONALLY ROBUST COVARIANCE ESTIMATORS 31

whenever x1/2 ≥ ρ(n, η). By the definition of ρ(n, η), a sufficient condition for this inequality to hold is

n ≥ nmin(η) =
c20σ

4

x21

Ç√
log η−1 +

 
log η−1 +

2x1
c0σ2

log η−1

å2

.

The above estimates imply that (23) holds for all n ≥ nmin(η) and η ∈ (0, 1) if we set c = p/x1. In addition,

the minimal sample size and the minimal radius of the uncertainty set satisfy nmin(η) = O(log η−1) and

εmin(n, η) = cρ(n, η) =
p

x1
c0σ

2

Ç
log η−1

n
+

…
log η−1

n

å
= O(n−

1
2 (log η−1)

1
2 ),

where the last equality holds because n ≥ O(log η−1). This establishes the claim for the Stein, the inverse

Stein and the symmetrized Stein divergences.

Wasserstein Divergence: From the proof of [44, Theorem 4] we know that if x̂1,n ≥ x1

2 , then

D(Σ0, Σ̂n) ≤
1

(x̂1,n + x1)2
∥Σ0 − Σ̂n∥2 ≤ 4

9x21
∥Σ0 − Σ̂n∥2.

We also know from (24) that Pn[x̂1,n ≥ x1

2 ] ≥ 1− η
2 for all n ≥ O(log η−1). Thus, we have

Pn

ï
D(Σ0, Σ̂n) ≤

4

9x21
∥Σ0 − Σ̂n∥2

ò
≥ Pn

[
x̂1,n ≥ x1

2

]
≥ 1− η

2
(25)

for all n ≥ O(log η−1). Lemma 11 further implies that

Pn
î
∥Σ0 − Σ̂n∥ ≤ 1

ó
≥ Pn

î
∥Σ0 − Σ̂n∥ ≤ ρ(n, η)

ó
≥ 1− η

2
, (26)

whenever

1 ≥ ρ(n, η) = c0σ
2

Ç
log η−1

n
+

…
log η−1

n

å
.

A sufficient condition for this inequality to hold is that n ≥ O(log η−1). Combining the estimates (25) and (26)

and using the union bound implies that there is a function nmin(η) that grows at most as O(log η−1) with

Pn

ï
D(Σ0, Σ̂n) ≤

4

9x21
∥Σ0 − Σ̂n∥

ò
≥ 1− η

for all n ≥ nmin(η). Thus, (23) holds for all n ≥ nmin(η) and η ∈ (0, 1) if we set c = 4/(9x21). Similar calcu-

lations as in the last part of the proof reveal that εmin(n, η) = cρ(n, η) grows at most as O(n−
1
2 (log η−1)

1
2 ).

This establishes the claim for the Wasserstein divergence.

Quadratic Divergence: Since ∥A∥F ≤ √
p∥A∥ for all A ∈ Sp, we have

D(Σ0, Σ̂n) = ∥Σ0 − Σ̂n∥2F ≤ p∥Σ0 − Σ̂n∥2.

From (26) we already know that Pn[∥Σ0 − Σ̂n∥ ≤ 1] ≥ 1− η for all n ≥ O(log η−1). Thus, there is a function

nmin(η) = O(log η−1) such that (23) holds for all n ≥ nmin(η) and η ∈ (0, 1) if we set c = p. As usual, one

verifies that εmin(n, η) = cρ(n, η) = O(n−
1
2 (log η−1)

1
2 ). This proves the claim for the quadratic divergence.

Weighted Quadratic Divergence: As Tr[AB] ≤ ∥A∥∥B∥∗ ≤ p∥A∥∥B∥ for all A,B ∈ Sp, we have

D(Σ0, Σ̂n) = Tr[(Σ0 − Σ̂n)
2Σ̂−1

n ] ≤ p∥(Σ0 − Σ̂n)
2∥∥Σ̂−1

n ∥ ≤ p

x̂1,n
∥Σ0 − Σ̂n∥2 ≤ 2p

x1
∥Σ0 − Σ̂n∥2

whenever x̂1,n ≥ x1

2 . Recall also that Σ̂n is indeed invertible under this assumption. Together with (24)

and (26), the above inequality implies that there exists a function nmin(η) = O(log η−1) such that

Pn

ï
D(Σ0, Σ̂n) ≤

2p

x1
∥Σ0 − Σ̂n∥

ò
≥ 1− η,

for all n ≥ nmin(η). Thus, (23) holds for all n ≥ nmin(η) and η ∈ (0, 1) if we set c = 2p/x1. As usual, one

verifies that εmin(n, η) = O(n−
1
2 (log η−1)

1
2 ). This proves the claim for the weighted quadratic divergence.
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Fisher-Rao Divergence: As log2 x ≤ x− 2 + x−1 for all x > 0, the Fisher-Rao divergence satisfies

D(X,Y ) =

p∑
i=1

log2 λi(XY
−1) ≤

p∑
i=1

Å
λi(XY

−1)− 2 +
1

λi(XY −1)

ã
= Tr[XY −1]− 2p+Tr[Y X−1]

for all X,Y ∈ Sp++, where the last expression equals twice the symmetrized Stein divergence of X and Y . We

have already shown that (23) holds for symmetrized Stein divergence for all n ≥ nmin(η) = O(log η−1) and

η ∈ (0, 1) provided that c = p
x1
. Thus, (23) must also hold for the Fisher-Rao divergence if c = 2p

x1
. As usual,

one readily verfies that εmin = O(n−
1
2 (log η−1)

1
2 ). This proves the claim for the Fisher-Rao divergence. □

Appendix C. Verification of the Minimax Property

Proposition 13. All the divergences listed in Table 1 satisfy Assumption 1.

Proof of Proposition 13. Our goal is to prove the minimax equality

min
X∈Sp+

max
Σ∈Bε(“Σ)

Tr[X2]− 2⟨Σ, X⟩ = max
Σ∈Bε(“Σ)

min
X∈Sp+

Tr[X2]− 2⟨Σ, X⟩. (27)

If D is the Kullback-Leibler, Fisher-Rao, inverse Stein, symmetrized Stein or weighted quadratic divergence

and if Σ̂ is singular, then (Σ, Σ̂) ̸∈ dom(D) for every Σ ∈ Sp+. In this case, the uncertainty set Bε(Σ̂) = {Σ ∈
Sp+ : D(Σ, Σ̂) ≤ ε} is empty, and the minimax equality (27) holds trivially because both sides of (27) evaluate

to ∞. Thus, we may always assume that Σ̂ ∈ Sp++ for these divergences.

The objective function Tr[X2]−2⟨Σ, X⟩ of the minimax problem (27) is convex and continuous in X for any

fixed Σ ∈ Bε(Σ̂), and it is concave and continuous in Σ for any fixed X ∈ Sp+. If Bε(Σ̂) is convex and compact,

then (27) follows readily from Sion’s classic minimax theorem. We will argue below that this is true for

the Kullback-Leibler, Wasserstein, symmetrized Stein, quadratic, and weighted quadratic divergences. The

uncertainty sets associated with the quadratic and weighted quadratic divergences constitute ellipsoids and

are, therefore, trivially convex and compact. In addition, the convexity and compactness of the uncertainty set

induced by the Wasserstein divergence follow from [45, Lemma A.6]. We next show that the Kullback-Leibler

and symmetrized Stein divergences also induce convex and compact uncertainty sets.

Kullback-Leibler Divergence: For any fixed Σ̂ ∈ Sp++, the Kullback-Leibler divergence D(Σ, Σ̂) consti-

tutes a continuous extended real-valued function of Σ. Indeed, one can show that D(Σ, Σ̂) tends to infinity

as Σ approaches the boundary of Sp+ and Σ̂ ∈ Sp++ is kept fixed. Therefore, the uncertainty set Bε(Σ̂) is closed

as a sublevel set of a continuous function. As t− 1− log t ≥ 0 for every t > 0, any Σ ∈ Bε(Σ̂) satisfies

ε ≥ D(Σ, Σ̂) =
1

2

p∑
i=1

Ä
λi(Σ̂

−1Σ)− 1− log λi(Σ̂
−1Σ)

ä
≥ 1

2

Ä
λp(Σ̂

−1Σ)− 1− log λp(Σ̂
−1Σ)

ä
.

Note that the function t−1− log t grows indefinitely as t tends to infinity. Consequently, the above inequality

implies that there exists λ > 0 with λp(Σ̂
−1Σ) ≤ λ for all Σ ∈ Bε(Σ̂). Recall now that the operator norm of

any positive definite matrix coincides with its maximum eigenvalue. For any Σ ∈ Bε(Σ̂) we thus have

∥Σ∥ = ∥Σ̂ 1
2 Σ̂− 1

2ΣΣ̂− 1
2 Σ̂

1
2 ∥ ≤ ∥Σ̂− 1

2ΣΣ̂− 1
2 ∥∥Σ̂∥ = λp(ΣΣ̂

−1)λp(Σ̂) ≤ λλp(Σ̂),

where the second equality holds because ∥Σ̂− 1
2ΣΣ̂− 1

2 ∥ = λp(Σ̂
− 1

2ΣΣ̂− 1
2 ) and because ΣΣ̂−1 has the same

eigenvalues as Σ̂− 1
2ΣΣ̂− 1

2 . This shows that Bε(Σ̂) is bounded and thus compact. Finally, note that D(Σ, Σ̂)

is convex in Σ because Tr[Σ̂−1Σ] is linear and log det(Σ̂Σ−1) is convex in Σ. Hence, Bε(Σ̂) is convex.

Symmetrized Stein Divergence: For any fixed Σ̂ ∈ Sp++, the symmetrized Stein divergence D(Σ, Σ̂) is

continuous in Σ. Thus, the corresponding uncertainty set Bε(Σ̂) is closed. Also, any Σ ∈ Bε(Σ̂) satisfies

ε ≥ D(Σ, Σ̂) =
1

2

p∑
i=1

Ä
λi(Σ̂

−1Σ) + λ−1
i (Σ̂−1Σ)− 2

ä
≥ 1

2

Ä
λp(Σ̂

−1Σ) + λ−1
p (Σ̂−1Σ)− 2

ä
,
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where the second inequality holds because all eigenvalues of Σ̂−1Σ are positive. Note that t+ t−1 − 2 grows

indefinitely as t tends to infinity. Hence, there exists λ > 0 with λp(Σ̂
−1Σ) ≤ λ for all Σ ∈ Bε(Σ̂). By using a

similar reasoning as for the Kullback-Leibler divergence, we can thus show that Bε(Σ̂) is compact. To prove

convexity, we need to show that D(Σ, Σ̂) is a convex function of Σ. But this follows from [9, Exercise 3.18(a)].

The uncertainty sets induced by the Fisher-Rao and inverse Stein divergences fail to be convex in the

standard Euclidean sense; see Section C.1. We will show, however, that these uncertainty sets are geodesically

convex with respect to a certain Riemannian geometry on the cone Sp++. This will allow us to prove the

minimax equality (27) by appealing to Theorem 3, which establishes a generalized version of Sion’s minimax

theorem for geodesic quasi-convex-quasi-concave minimax problems on Hadamard manifolds.

In order to apply Theorem 3, we embed the feasible set Sp+ of the minimization problem in (27) into Sp

equipped with the usual Euclidean geometry. Recall from Example 3 that Sp can be viewed as a Hadamard

manifold and that the associated geodesic convexity coincides with the usual Euclidean convexity. Thus, the

feasible set Sp+ constitutes a convex subset of the Hadamard manifold Sp. In addition, we embed the feasible

set Bε(Σ̂) of the maximization problem in (27) into Sp++. Recall from Example 4 that Sp++ also constitutes

a Hadamard manifold. The objective function Tr[X2]− 2⟨Σ, X⟩ of (27) is ostensibly convex and continuous

in X. Similarly, by Lemma 13, the objective function is geodesically concave and continuous in Σ. Hence,

Theorem 3 applies, and the desired minimax equality (27) follows if we can prove that Bε(Σ̂) is geodesically

convex as well as compact with respect to the metric topology induced by the Riemannian geometry on Sp++.

By Remark 1, however, this notion of compactness is equivalent to the usual compactness notion with respect

to the Euclidean space Sp. Therefore, it suffices to show that Bε(Σ̂) is compact in the usual sense.

As for the Fisher-Rao divergence, the compactness and geodesic convexity of Bε(Σ̂) follow from Lemma 12.

It thus remains to prove the desired properties of Bε(Σ̂) for the inverse Stein divergence.

Inverse Stein Divergence: For any fixed Σ̂ ∈ Sp++, the inverse Stein divergence D(Σ, Σ̂) is continuous

in Σ. Therefore, the corresponding uncertainty set Bε(Σ̂) is closed. In addition, any Σ ∈ Bε(Σ̂) satisfies

ε ≥ D(Σ, Σ̂) =
1

2

p∑
i=1

Ä
λi(Σ

−1Σ̂)− 1− log λi(Σ
−1Σ̂)

ä
≥ 1

2

Ä
λ1(Σ

−1Σ̂)− 1− log λ1(Σ
−1Σ̂)

ä
,

where the second inequality holds because t−1−log t ≥ 0 for all t > 0. As t−1−log t grows indefinitely when t

tends to 0, the above inequality implies that there exists λ > 0 with λ1(Σ
−1Σ̂) ≥ λ for all Σ ∈ Bε(Σ̂). This

in turn implies that λp(Σ̂
−1Σ) = λ−1

1 (Σ−1Σ̂) ≤ λ−1 for all Σ ∈ Bε(Σ̂). We may thus conclude that Bε(Σ̂) is

compact. Finally, since D(Σ, Σ̂) = 1
2

Ä
Tr[Σ−1Σ̂]− p+ log detΣ− log det Σ̂

ä
, D(Σ, Σ̂) is a geodesically convex

function of Σ thanks to Lemmas 13(ii) and 13(iii). Therefore, Bε(Σ̂) is a geodesically convex set by virtue of

Proposition 14. □

C.1. Inapplicability of Sion’s Minimax Theorem

We now show through counterexamples that if D(Σ, Σ̂) is the Fisher-Rao or inverse Stein divergence, then

the corresponding uncertainty set Bε(Σ̂) =
¶
Σ ∈ Sp+ : D(Σ, Σ̂) ≤ ε

©
fails to be a convex subset of Sp. Hence,

for these divergences, we cannot appeal to Sion’s classic minimax theorem to prove (27). More precisely, we

will show that D(Σ, Σ̂) fails to be quasi-convex and thus has non-convex sublevel sets.

Definition 4 (Quasi-convex function). A function ψ : Sp+ → R is quasi-convex if for any Σ1,Σ2 ∈ Sp+ and

λ ∈ [0, 1], we have ψ (λΣ1 + (1− λ)Σ2) ≤ max{ψ(Σ1), ψ(Σ2)}.

Example 1 (Non-convexity of the Fisher-Rao uncertainty set). The function D(Σ, Σ̂) = ∥ log(Σ̂− 1
2ΣΣ̂− 1

2 )∥2F
is not quasi-convex in Σ for any fixed Σ̂ ∈ S3++. To see this, assume first that Σ̂ = I3. Setting

Σ1 =

Ö
33 −5 −10

−5 6 3

−10 3 4

è
and Σ2 =

Ö
6 −4 5

−4 11 −2

5 −2 18

è
,
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one readily verifies that Σ1,Σ2 ≻ 0, while D(Σ1, I3) = 16.4501 and D(Σ2, I3) = 16.2111. In addition, we find

D( 12Σ1 +
1
2Σ2, I3) = 18.6796 > max{16.4501, 16.2111} = max{D(Σ1, I3), D(Σ2, I3)}.

This shows that D(Σ, I3) fails to be quasi-convex in Σ. For a generic Σ̂ ∈ S3++, we define Σ′
1 = Σ̂

1
2Σ1Σ̂

1
2 and

Σ′
2 = Σ̂

1
2Σ2Σ̂

1
2 . The above inequality then immediately implies that

D( 12Σ
′
1 +

1
2Σ

′
2, Σ̂) > max{D(Σ′

1, Σ̂), D(Σ′
2, Σ̂)}.

Consequently, the function D(Σ, Σ̂) fails to be quasi-convex in Σ irrespective of Σ̂ ∈ S3++.

Example 2 (Non-convexity of the inverse Stein uncertainty set). The function D(Σ, Σ̂) = 1
2 (Tr[Σ

−1Σ̂]− 3+

log det(ΣΣ̂−1)) is not quasi-convex in Σ for any fixed Σ̂ ∈ S3++. Indeed, if Σ̂ = I3, we may set

Σ1 =

Ö
30 13 23

13 12 9

23 9 20

è
and Σ2 =

Ö
27 13 23

13 10 14

23 14 30

è
.

It can be verified that Σ1,Σ2 ≻ 0, while D(Σ1, I3) = 4.0427 and D(Σ2, I3) = 4.3020. In addition, we find

D( 12Σ1 +
1
2Σ2, I3) = 4.3262 > max{4.0427, 4.3020} = max{D(Σ1, I3), D(Σ2, I3)}.

This shows that D(Σ, I3) fails to be quasi-convex in Σ. For a generic Σ̂ ∈ S3++, we define Σ′
1 = Σ̂

1
2Σ1Σ̂

1
2 and

Σ′
2 = Σ̂

1
2Σ2Σ̂

1
2 . The above inequality then immediately implies that

D( 12Σ
′
1 +

1
2Σ

′
2, Σ̂) > max{D(Σ′

1, Σ̂), D(Σ′
2, Σ̂)}

that is, the function D(Σ, Σ̂) fails to be quasi-convex in Σ irrespective of Σ̂ ∈ S3++.

C.2. Riemannian Geometry and Geodesic Convexity

In order to keep this paper self-contained, we now briefly review some basic concepts from Riemannian

geometry. For a more comprehensive survey of this topic, we refer to the excellent textbooks [29, 37].

Definition 5 (Riemannian manifold). A Riemannian manifold is a pair (M, {⟨ · , · ⟩u}u∈M) consisting of a

differentiable manifold M and a smooth family of inner products {⟨ · , · ⟩u}u∈M defined on the tangent spaces

TuM of M. That is, for any u ∈ M, ⟨ · , · ⟩u represents a symmetric, positive definite bilinear map on TuM.

The family {⟨ · , · ⟩u}u∈M of inner products is called a Riemannian metric on M.

Throughout this paper we will restrict attention to Hadamard manifolds.

Definition 6 (Hadamard manifolds). A Hadamard manifold is a complete, simply connected Riemannian

manifold that has everywhere non-positive sectional curvature.

Intuitively, the sectional curvature of a Riemannian manifold is non-positive at a point u if and only if the

area of any small two-dimensional disc centered at u is larger or equal to the area of a disc with the same radius

in flat space. For a formal definition see [29, p. 236] or [37, p. 154]. All piecewise continuously differentiable

curves on a Riemannian manifold—and, in particular, on a Hadamard manifold—can be assigned a length.

Definition 7 (Length of a curve). The length of a continuously differentiable curve c : [0, 1] → M on a

Riemannian manifold (M, {⟨ · , · ⟩u}u∈M) is defined as

L(c) =

∫ 1

0

»
⟨ċ(t), ċ(t)⟩c(t) dt.

If c is piecewise continuously differentiable, then its length is defined as the sum of the lengths of its pieces.
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The Riemannian distance between two points u1, u2 ∈ M is defined as dM(u1, u2) = minc L(c), where the

minimum is over all continuously differentiable curves c with constant speed (⟨ċ(t), ċ(t)⟩c(t))
1
2 that connect

u1 and u2. For complete and connected Riemannian manifolds, the minimum is guaranteed to exist, and

any minimizer is a geodesic. Moreover, by the Hopf-Rinow theorem [29, 37], any two points on a Hadamard

manifold are connected by a unique geodesic. This greatly simplifies the study of convexity on such manifolds.

Definition 8 (Geodesically convex sets). If (M, {⟨ · , · ⟩u}u∈M) is a Hadamard manifold, then U ⊆ M is

geodesically convex if, for any u1, u2 ∈ U , the image of the geodesic connecting u1 and u2 lies within U .

Definition 9 (Geodesically (quasi-)convex function). If (M, {⟨ · , · ⟩u}u∈M) is a Hadamard manifold and

U ⊆ M is geodesically convex, then the function ψ : U → R is geodesically (quasi-)convex if the composition

ψ ◦ c : [0, 1] → R is (quasi-)convex function in the usual Euclidean sense for every geodesic c connecting two

arbitrary points in U . In addition, ϕ is geodesically (quasi-)concave if −ϕ is geodesically (quasi-)convex.

Definition 9 makes sense because a geodesic is always parametrized proportionally to arc length. It readily

implies that all sublevel sets of a geodesically quasi-convex function are geodesically convex.

Proposition 14 ([62, Theorem 3.4]). If (M, {⟨ · , · ⟩u}u∈M) is a Hadamard manifold and ψ : M → R is

geodesically quasi-convex, then the sublevel set {u ∈ M : ψ(u) ≤ α} is geodesically convex for any α ∈ R.

The examples below are useful for our theoretical development and used in the proof of Proposition 13.

Example 3. The Euclidean spaces Rp and Sp equipped with their usual inner products constitute Hadamard

manifolds. In both cases, geodesic convexity (of sets as well as functions) reduces to Euclidean convexity.

Example 4. The cone of positive definite matrices Sp++ represents a differentiable manifold [5, 29]. The tan-

gent space TΣSp++ at Σ ∈ Sp++ is naturally identified with Sp, that is, all tangent vectors constitute symmetric

matrices. We can assign every Σ ∈ Sp++ an inner product ⟨ · , · ⟩Σ : Sp × Sp → R defined through

⟨Σ1,Σ2⟩Σ = Tr[Σ−1Σ1Σ
−1Σ2] ∀Σ1,Σ2 ∈ Sp.

By [29, Theorem XII 1.2], Sp++ equipped with the inner products ⟨ · , · ⟩Σ, Σ ∈ Sp++, is a Hadamard manifold.

Remark 1. By definition, any Hadamard manifold (M, {⟨ · , · ⟩u}u∈M) is simply connected and therefore,

in particular, connected. Hence, [38, Theorem 13.29] implies that the metric topology on M induced by the

Riemannian distance dM coincides with the manifold topology. For instance, the metric topology on the

Hadamard manifold Sp++ from Example 4 coincides with the subspace topology on Sp++ inherited from the

ambient vector space Sp, which is the standard (Euclidean norm) topology used for matrices.

In the following lemmas, we treat Sp++ as a Hadamard manifold in the sense of Example 4.

Lemma 12 (Compactness and convexity [46, Theorem 2.5]). For any fixed Σ′ ∈ Sp++, the set{
Σ ∈ Sp++ : ∥ log(Σ′− 1

2ΣΣ′− 1
2 )∥2F ≤ ε2

}
constitutes a compact and geodesically convex subset of Sp++.

We now show that several popular matrix functions are geodesically convex. Here, we adopt the standard

terminology whereby a function that is both geodesically convex and concave is called geodesically linear.

Lemma 13 (Geodesic convexity of popular matrix functions). The following hold.

(i) g(Σ) = Tr[XΣ] is geodesically convex on Sp++ for every X ∈ Sp+.
(ii) g(Σ) = Tr[XΣ−1] is geodesically convex on Sp++ for every X ∈ Sp+.
(iii) g(Σ) = log detΣ is geodesically linear on Sp++.
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Proof of Lemma 13. We can prove assertion (i) by showing that, for every fixed Σ ∈ Sp++, the Riemannian

Hessian of the function g(Σ) = Tr[XΣ] is positive semidefinite on the tangent space TΣSp++
∼= Sp [2, 62]. To

this end, note first that the Euclidean gradient of g is given by ∇g(Σ) = X and that the Euclidean Hessian

∇2g(Σ) coincides with the zero map from Sp to Sp. By [14, § 4.2], the Riemannian Hessian of g thus satisfies

Hess g(Σ)[S] =
1

2
(SXΣ+ ΣXS) ∀S ∈ Sp.

This implies that 〈
Hess g(Σ)[S], S

〉
Σ
= Tr[SXSΣ−1] ≥ 0 ∀S ∈ Sp,

where the inequality holds because SXS ∈ Sp+ and Σ−1 ∈ Sp++. Thus, the Riemannian Hessian of g is

positive semidefinite on the tangent space TΣSp++
∼= Sp. As Σ ∈ Sp++ was chosen freely, this shows via [62,

Theorem 6.2] that g is geodesically convex throughout Sp++.

Assertions (ii) and (iii) are proved similarly. As for assertion (ii), note that the gradient of g(Σ) = Tr[XΣ−1]

is given by ∇g(Σ) = −Σ−1XΣ−1 [50, § 2.2]. Also, the Hessian of g is a linear operator on Sp satisfying

∇2g(Σ)[S] =
d∇g(Σ + tS)

dt

∣∣∣∣
t=0

= − d(Σ + tS)−1

dt

∣∣∣∣
t=0

XΣ−1 − Σ−1X
d(Σ + tS)−1

dt

∣∣∣∣
t=0

= Σ−1SΣ−1XΣ−1 +Σ−1XΣ−1SΣ−1,

where the third equality exploits [50, § 2.2]. By [14, § 4.2], the Riemannian Hessian of g thus satisfies

Hess g(Σ)[S] =
1

2
(SΣ−1X +XΣ−1S) ∀S ∈ Sp.

This implies that〈
Hess g(Σ)[S], S

〉
Σ
=

1

2
Tr[Σ−1(SΣ−1X +XΣ−1S)Σ−1S] = Tr[SΣ−1SΣ−1XΣ−1] ≥ 0 ∀S ∈ Sp,

where the inequality holds because SΣ−1S and Σ−1XΣ−1 are positive semidefinite. Thus, the Riemannian

Hessian of g is positive semidefinite on the tangent space TΣSp++
∼= Sp, and the claim follows.

As for assertion (iii), the gradient of g(Σ) = log detΣ is given by ∇g(Σ) = −Σ−1, and the Hessian of g is a

linear operator on Sp satisfying ∇2g(Σ)[S] = Σ−1SΣ−1 [50, § 2.2]. By [14, § 4.2], the Riemannian Hessian of g

thus satisfies Hess g(Σ)[S] = 0 for all S ∈ Sp. Hence, g is both geodesically convex and concave on Sp++. □

C.3. A Riemannian Generalization of Sion’s Minimax Theorem

We now prove a generalization of Sion’s minimax theorem for geodesically convex-concave saddle functions

on Hadamard manifolds. This result appears to be new and may be of independent interest.4

Theorem 3 (Sion’s minimax theorem for geodesically convex-concave saddle problems). Let U and V be

geodesically convex subsets of two Hadamard manifolds, and assume that U is compact. Also, let ψ : U×V → R
be a function with ψ(u, · ) being upper semi-continuous and geodesically quasi-concave on V for any fixed u ∈ U
and with ψ( · , v) being lower semi-continuous and geodesically quasi-convex on U for every fixed v ∈ V. Then,

min
u∈U

sup
v∈V

ψ(u, v) = sup
v∈V

min
u∈U

ψ(u, v).

The proof of Theorem 3 parallels that of Sion’s minimax theorem as presented in [26], with appropriate

modifications to account for the manifold setting. The following two lemmas are instrumental for the proof.

Lemma 14. If all conditions of Theorem 3 hold, v1, v2 ∈ V and α < minu∈U max{ψ(u, v1), ψ(u, v2)}, then
there exists v0 ∈ V with α < minu∈U ψ(u, v0).

4While finalizing this paper, we discovered a concurrent work describing a result akin to Theorem 3 [70]. A preliminary

version of our paper—including Theorem 3—was presented at the Robust Optimization Webinar on 24 June, 2021.
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Proof of Lemma 14. Fix any v1, v2 ∈ V and α < minu∈U max{ψ(u, v1), ψ(u, v2)}, and suppose for the sake of

contradiction that α ≥ minu∈U ψ(u, v) for all v ∈ V. Next, choose any β with

α < β < min
u∈U

max{ψ(u, v1), ψ(u, v2)}.

Let c : [0, 1] → V be the unique geodesic from v1 to v2, and denote by [v1, v2] = c([0, 1]) its image. Also, for

any threshold ζ ∈ R and point v ∈ [v1, v2] on the geodesic, we denote the sublevel set of ψ( · , v) at level ζ as

Lv(ζ) = {u ∈ U : ψ(u, v) ≤ ζ}.

Note that Lv(α) and Lv(β) are non-empty for all v ∈ V because of our assumption that α ≥ minu∈U ψ(u, v).

In addition, Lv(α) and Lv(β) are closed because ψ(u, v) is lower semi-continuous in u. Suppose now that

there is ū ∈ Lv1(β)∩Lv2(β) such that ψ(ū, v1) ≤ β and ψ(ū, v2) ≤ β. By the choice of β and ū, we thus have

β < min
u∈U

max{ψ(u, v1), ψ(u, v2)} ≤ max {ψ(ū, v1), ψ(ū, v2)} ≤ β,

which is a contradiction. Hence, Lv1(β)∩Lv2(β) = ∅. As ψ(u, · ) is geodesically quasi-concave on V for every

fixed u ∈ U , the composition ψ(u, c( · )) is quasi-concave in the classical sense on [0, 1]. Therefore, we find

ψ(u, v) = ψ(u, c(tv)) ≥ min{ψ(u, c(0)), ψ(u, c(1))} = min{ψ(u, v1), ψ(u, v2)}

for every u ∈ U and v ∈ [v1, v2], where tv ∈ [0, 1] is the pre-image of v under the geodesic map c, that

is, tv is the unique solution of the equation c(tv) = v. This implies that Lv(β) ⊆ Lv1(β) ∪ Lv2(β). By

Proposition 14, which applies because ψ( · , v) is geodesically quasi-convex for every v ∈ [v1, v2] ⊆ V, the
set Lv(α) is geodesically convex and hence connected. In summary, we have shown that, for any v ∈ [v1, v2],

the connected set Lv(α) ⊆ Lv(β) is covered by the union of Lv1(β) and Lv2(β), which are mutually disjoint.

Hence, exactly one of the following two inclusions holds:

Lv(α) ⊆ Lv(β) ⊆ Lv1(β) or Lv(α) ⊆ Lv(β) ⊆ Lv2(β). (28)

Next, define I = {t ∈ [0, 1] : Lc(t)(α) ⊆ Lv1(β)} and J = {t ∈ [0, 1] : Lc(t)(α) ⊆ Lv2(β)}. Since α < β,

c(0) = v1 and c(1) = v2, it is clear that 0 ∈ I and 1 ∈ J , that is, both sets are non-empty. By (28), we further

have I ∩ J = ∅ and I ∪ J = [0, 1]. We will now show that I is closed. To this end, let {tk}k∈N be a sequence

in I converging t∞ ∈ [0, 1]. To prove that I is closed, we must show that t∞ ∈ I. Define v = c(t∞), and

select any u ∈ Lv(α). By construction, we have ψ(u, v) ≤ α < β. Furthermore, by the upper semi-continuity

of ψ(u, · ) on V and the continuity of c, we therefore obtain

lim sup
k→∞

ψ(u, c(tk)) ≤ ψ(u, lim
k→∞

c(tk)) = ψ(u, v) ≤ α < β.

This implies that there is k′ ∈ N such that v′ = c(tk
′
) satisfies ψ(u, v′) < β, that is, u ∈ Lv′(β). Since

tk
′ ∈ I, we know from the definition of I that Lv′(α) ⊆ Lv1(β). However, in view of the dichotomy (28),

this is only possible if Lv′(β) ⊆ Lv1(β). Thus, u ∈ Lv1(β). Since u ∈ Lv(α) was chosen arbitrarily, we have

Lv(α) ⊆ Lv1(β). As v = c(t∞), we thus have t∞ ∈ I, proving that I is closed. Similarly, we can show that J

is closed, too. However, as I and J form a partition of [0, 1], they cannot be simultaneously closed. This

contradiction implies that our initial assumption was false, that is, we have indeed α < minu∈U ψ(u, v0). □

Lemma 15. If all conditions of Theorem 3 hold, v1, . . . , vn ∈ V and α < minu∈U max1≤i≤n ψ(u, vi) for

some n ∈ N, then there exists v0 ∈ V with α < minu∈U ψ(u, v0).

Proof of Lemma 15. The statement trivially holds if U = ∅. In the remainder we may thus assume without

loss of generality that U ≠ ∅. We prove the claim by induction on n. The base step corresponding to n = 1

is trivial. As for the induction step, fix any n > 1, and assume that the claim corresponding to n− 1 is true.

Next, define the sublevel set Un = {u ∈ U : ψ(u, vn) ≤ α}, which is geodesically convex and closed thanks to

our assumptions about ψ and U . In addition, Un inherits compactness from U . We then have

α < min
u∈U

max
1≤i≤n

ψ(u, vi) ≤ min
u∈Un

max
1≤i≤n

ψ(u, vi) = min
u∈Un

max
1≤i≤n−1

ψ(u, vi),
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where the second inequality follows from the inclusion Un ⊆ U , and the equality holds because any u ∈ Un

satisfies ψ(u, vn) ≤ α, which implies that i = n never attains the maximum. As the sets Un and V as well as

the restriction of ψ to Un × V satisfy all conditions of Theorem 3, we may invoke the induction hypothesis

to conclude that there exists v′0 ∈ V with α < minu∈Un
ψ(u, v′0). Hence, for any u ∈ U , we have either

α < ψ(u, v′0) (if u ∈ Un) or α < ψ(u, vn) (if u ∈ U \ Un). In other words, we have shown that

α < min
u∈U

max{ψ(u, v′0), ψ(u, vn)}.

By Lemma 14, we may conclude that α < minu∈U ψ(u, v0) for some v0 ∈ V. This completes the proof. □

The proof of Theorem 3 also relies on the following elementary topological lemma.

Lemma 16. Let {Xa}a∈A be a non-empty family of compact subsets of a Hausdorff topological space with

∩a∈AXa = ∅. Then, there exist finitely many indices a1, . . . , an ∈ A with ∩n
i=1Xai

= ∅.

Proof of Lemma 16. Fix an arbitrary index a0 ∈ A, and define Ya = Xa0 \Xa for every a ∈ A. Note that Xa0

is Hausdorff because it constitutes a subspace of a Hausdorff space. Recall also that Xa0 is compact and

that any compact subset of a Hausdorff space is closed. Therefore, Ya is open with respect to the subspace

topology on Xa0
. By de Morgan’s laws, we further have⋃

a∈A
Ya = Xa0

\
⋂
a∈A

Xa = Xa0
\ ∅ = Xa0

.

Thus, {Ya}a∈A constitutes an open cover of Xa0
. As Xa0

is compact, there is a finite sub-cover {Yai
}ni=1 with

Xa0
=

n⋃
i=1

Yai
= Xa0

\
n⋂

i=1

Xai
,

where the second equality follows again from de Morgan’s laws. We have thus shown that ∩n
i=0Xai

= ∅. □

We are now armed to prove Theorem 3.

Proof of Theorem 3. By the max-min inequality, we have

sup
v∈V

min
u∈U

ψ(u, v) ≤ min
u∈U

sup
v∈V

ψ(u, v).

It thus suffices to prove the reverse inequality. To this end, select any α < minu∈U supv∈V ψ(u, v), and define

Uv = {u ∈ U : ψ(u, v) ≤ α} for every v ∈ V. As ψ( · , v) is lower semi-continuous, Uv is a closed subset of U
and thus compact. Suppose now that there exists u ∈ ∩v∈VUv. By the definitions of u and Uv, we then find

sup
v∈V

ψ(u, v) ≤ α,

which contradicts the selection of α. We may thus conclude that ∩v∈VUv = ∅, which implies via Lemma 16

that there exist finitely many indices v1, . . . , vn ∈ V with ∩n
i=1Uvi = ∅. This in turn implies that

α < min
u∈U

max
1≤i≤n

ψ(u, vi).

Lemma 15 then guarantees the existence of a point v0 ∈ V satisfying α < minu∈U ψ(u, v0). Therefore, we

have α < supv∈V minu∈U ψ(u, v). As α < minu∈U supv∈V ψ(u, v) was chosen arbitrarily, we finally obtain

min
u∈U

sup
v∈V

ψ(u, v) ≤ sup
v∈V

min
u∈U

ψ(u, v).

This observation completes the proof. □
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Appendix D. Verification of the Rearrangement Property

Proposition 15. All the divergences listed in Table 1 satisfy Assumption 2(c).

Proof of Proposition 15. Let D be the Kullback-Leibler, Fisher-Rao, inverse Stein or symmetric Stein diver-

gence. In either case, if x or y contains any vanishing entry, then both sides of the rearrangement inequality in

Assumption 2(c) evaluate to +∞; see the definitions in Table 1. Thus, Assumption 2(c) is trivially satisfied.

It therefore suffices to prove the inequality for x, y ∈ Rp
++. Next, let D be the weighted quadratic divergence.

Hence, if y contains any vanishing entry, then both sides of the rearrangement inequality evaluate again

to +∞, and Assumption 2(c) is trivially satisfied. It therefore suffices to assume that y ∈ Rp
++. With these

assumptions in place, both sides of the rearrangement inequality are guaranteed to be finite.

The subsequent proof requires additional notation. We use σi(S) to denote the i-th smallest singular value

of the matrix S ∈ Sp. The vector σ(S) ∈ Rp
+ is then defined through (σ(S))i = σi(S) for all i = 1, . . . , p. Any

univariate function g : R → R naturally induces multivariate functions g : Rp → Rp and g : Sp → Sp, which,
by slight abuse of notation, are represented by the same symbol g. Specifically, for any x ∈ Rp, we define

g(x) ∈ Rp through (g(x))i = g(xi) for all i = 1, . . . , p. Similarly, for any S ∈ Sp with eigenvalue decomposition

S = VS Diag(λ(S))V ⊤
S with VS ∈ Op, we define g(S) ∈ Sp through g(S) = VS Diag(g(λ(S)))V ⊤

S .

Observe now that all divergences listed in Table 1 are representable as

D(X,Y ) =

p∑
i=1

(
h1(λi(X)) + h2(λi(Y ))

)
+

p∑
i=1

f
(
λi(g2(Y

1
2 )g1(X)g2(Y

1
2 ))
)

(29)

for some functions f , h1, h2, g1 and g2 from R to R as specified in Table 4.

Divergence h1(t) h2(t) g1(t) g2(t) f(t) tf ′(t)

Kullback-Leibler − 1
4 − 1

4 t 1
t

1
2 (t− log t) 1

2 (t− 1)

Wasserstein t t t t −2
√
t −

√
t

Fisher-Rao 0 0 t 1
t (log t)

2
2 log t

Inverse Stein − 1
4 − 1

4 t 1
t

1
2

(
1
t + log t

)
1
2 (1−

1
t )

Symmetrized Stein − 1
2 − 1

2 t 1
t

1
2

(
t+ 1

t

)
1
2 (t−

1
t )

Quadratic t2 t2 t t −2t −2t

Weighted quadratic −2t t t2 1
t t t

Table 4. Functions h1, h2, g1, g2 and f in the representation (29) of the divergences of Table 1.

As the spectrum of any matrix is invariant under conjugation with an orthogonal matrix V ∈ O(p), we have
p∑

i=1

(
h1(λi(V Diag(x↑)V ⊤)) + h2(λi(Diag(y↑)))

)
=

p∑
i=1

(
h1(λi(Diag(x↑))) + h2(λi(Diag(y↑)))

)
for all x, y ∈ Rp. In view of the representation (29) and the above identity, it remains to be shown that

p∑
i=1

f
Ä
λi(Diag(

√
y
↑
)V g1(Diag(x↑))V ⊤g2(Diag(

√
y
↑
)))
ä
≥

p∑
i=1

f
(
λi(g1(Diag(x↑))g2(Diag(y↑)))

)
(30)

for all x, y ∈ Rp
+ and V ∈ O(p). Table 4 shows that always either of the following two conditions holds:
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• t 7→ tf ′(t) is strictly increasing, g1 is strictly increasing and g2 is is strictly decreasing;

• t 7→ tf ′(t) is strictly decreasing, and g1 and g2 are both strictly increasing.

The desired inequality (30) then follows from [69, Theorem 3]. Inspecting the proofs of [69, Theorem 3 and

Lemma 1] further reveals that (30) holds if and only if V g1(Diag(x↑))V ⊤ = g1(Diag(x↑)), which is equivalent

to V Diag(x↑)V ⊤ = Diag(x↑) because g1 is strictly increasing. This observation completes the proof. □

Appendix E. Proofs of Section 4

Proof of Theorem 2. We prove the assumptions one by one. Note first that, by Proposition 13, every diver-

gence D in Table 1 satisfies the minimax property specified in Assumption 1.

Assumption 2 requiresD to be a spectral divergence. To show thatD is orthogonally equivariant, recall that

the spectrum of a matrix is preserved under similarity transformations. As the trace and the determinant are

spectral functions, the orthogonal equivariance of all divergences in Table 1 is easily verified using elementary

rules of matrix algebra. It is also straightforward to verify that every divergence D in Table 1 is spectral with

generator d as specified in Table 2. In addition, the domain of d contains a point (a, b) with b > 0, and d is

ostensibly continuous throughout its domain. The rearrangement property holds thanks to Proposition 15.

Assumption 4 follows immediately from definitions of the generators in Table 2. For example, it is clear that

the generator db( · ) = d( · , b) = (log( · /b))2 of the Fisher-Rao divergence is twice continuously differentiable

on R++ for any fixed b > 0. In addition, we have d′′b (a) = 2(1− log(a/b))/a2 > 0 for any a ∈ (0, b] and b > 0,

which shows that db is convex on [0, b]. Similarly, one can prove Assumption 4 for all other divergences.

It remains to be shown that all generators in Table 2 satisfy the differential inequality of Assumption 5.

For example, the generator d(a, b) = (log(a/b))2 of the Fisher-Rao divergence satisfies

∂

∂a
d(a, b) =

2

a
log

a

b
,

∂2

∂a2
d(a, b) =

2

a2

(
1− log

a

b

)
and

∂2

∂b∂a
d(a, b) = − 2

ab
∀a, b ∈ R++.

Therefore, we obtain

a
∂2

∂a2
d(a, b) + b

∂2

∂a∂b
d(a, b)− ∂

∂a
d(a, b) =

2

a

(
1− log

a

b

)
− 2

a
− 2

a
log

a

b
= −4

a
log

a

b
> 0

for all for any b > a > 0. Hence, Assumption 5 holds for the Fisher-Rao divergence. Similarly, Assumption 5

can be proved for all other divergences using the basic rules of calculus. □

We now prove Corollaries 1, 2 and 3, which characterize the eigenvalue map as well as the inverse shrinkage

intensity of the KL, Wasserstein and Fisher-Rao covariance shrinkage estimators, respectively.

Proof of Corollary 1. The generator of the KL divergence is given by d(a, b) = 1
2 (

a
b − 1− log a

b ); see Table 2.

Note that Assumptions 1, 2, 4 and 5 hold by Theorem 2, Assumption 3(a) holds because Σ̂ ∈ Sp++, and

Assumption 3(b) holds because d(0, b) = +∞ for any b > 0. Therefore, Theorem 1 applies, which implies

that problem (4) is uniquely solved by X⋆ = “V Diag(x⋆)“V ⊤, where x⋆i = s(γ⋆, x̂i) for every i = 1, . . . , p.

Next, we construct the eigenvalue map s defined in (8). If b > 0, then s(γ, b) is the unique solution a⋆ ≥ 0 of

0 = 2a⋆ + γ
∂

∂a
d(a⋆, b) = 2a⋆ +

γ

2

Å
1

b
− 1

a⋆

ã
.

We thus obtain

s(γ, b) =
−γ +

√
γ2 + 16b2γ

8b
.

It remains to find a formula for γ⋆. By Theorem 1, γ⋆ is the unique positive root of the equation

p∑
i=1

d(s(γ⋆, x̂i), x̂i)− ε = 0 ⇐⇒ 2ε+ p+

p∑
i=1

ï
−s(γ

⋆, x̂i)

x̂i
+ log

s(γ⋆, x̂i)

x̂i

ò
= 0.
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To show that γKL provides an upper bound on γ⋆, note that the above equation implies that

0 = 2ε+ p+

p∑
i=1

ï
−s(γ

⋆, x̂i)

x̂i
+ log

s(γ⋆, x̂i)

x̂i

ò
≥ 2ε+

p∑
i=1

log
s(γ⋆, x̂i)

x̂i
≥ 2ε+ p log

s(γ⋆, x̂p)

x̂p
.

Here, the two inequalities follow from Lemmas 8 and 1, which imply that s(γ, b) < b for all γ, b > 0 and that

s(γ, b)/b is non-increasing in b, respectively. Rearranging the above inequality yields x̂p e
− 2ε

p ≥ s(γ⋆, x̂p). As

s(γ, x̂p) is strictly increasing in γ by virtue of Lemma 8(ii), the unique solution γKL of the equation

x̂p e
− 2ε

p = s(γKL, x̂p) =
−γKL +

»
γKL

2 + 16x̂2pγKL

8x̂p

provides an upper bound on γ⋆. The desired formula for γKL is obtained by solving this equation. □

Proof of Corollary 2. The generator of the Wasserstein divergence is given by d(a, b) = a + b − 2
√
ab; see

Table 2. Assumptions 1, 2, 4 and 5 hold by Theorem 2, Assumption 3(a) holds because Σ̂ ∈ Sp+, and

Assumption 3(b) holds because ε ∈ (0,Tr[Σ̂]), which implies that
∑p

i=1 d(0, x̂i) =
∑p

i=1 x̂i = Tr[Σ̂] > ε. Thus,

Theorem 1 applies. Recall now from (8) that if γ > 0, then s(γ, b) is defined as the unique solution a⋆ ≥ 0 of

0 = 2a⋆ + γ
∂

∂a
d(a⋆, b) = 2a⋆ + γ

Ç
1−
…

b

a⋆

å
.

Solving a cubic equation in
√
a⋆ thus reveals that s(γ, b) is given by (10a). Theorem 1 further implies that

the inverse shrinkage intensity γ⋆ is the unique positive root of the equation (10b). To show that γW provides

an upper bound on γ⋆, let i′ ∈ {1, . . . , p} be the smallest index i with x̂i > 0. As s(γ⋆, 0) = 0, (10b) implies

0 = ε−
p∑

i=i′

(√
x̂i −

»
s(γ⋆, x̂i)

)2
≥ ε− x̂p

p∑
i=i′

(
1−
 
s(γ⋆, x̂i)

x̂i

)2

≥ ε− px̂p

Ç
1−
 
s(γ⋆, x̂p)

x̂p

å2

= ε− p
(√

x̂p −
»
s(γ⋆, x̂p)

)2
, (31)

where the first inequality holds because x̂i ≤ x̂p, and the second inequality follows from Lemmas 1 and 8,

which imply that s(γ, b)/b is non-increasing in b and that 0 < s(γ, b) < b for all γ, b > 0, respectively. The

defining equation for s(γ⋆, x̂p) further implies that(√
x̂p −

»
s(γ⋆, x̂p)

)2
=

4s(γ⋆, x̂p)
3

γ⋆2
. (32)

Substituting (32) into (31) yields

0 ≥ ε− 4ps(γ⋆, x̂p)
3

γ⋆2
≥ ε−

4px̂3p
γ⋆2

⇐⇒ γ⋆ ≤ 2

 
px̂3p
ε

= γW.

This observation completes the proof. □

Proof of Corollary 3. The generator of the Fisher-Rao divergence is d(a, b) = (log a
b )

2; see Table 2. Assump-

tions 1, 2, 4 and 5 hold by Theorem 2, Assumption 3(a) holds because Σ̂ ∈ Sp++, and Assumption 3(b) holds

because d(0, b) = +∞ for any b > 0. Thus, Theorem 1 applies. If b > 0, s(γ, b) is the unique solution a⋆ ≥ 0 of

0 = 2a⋆ + γ
∂

∂a
d(a⋆, b) = 2a⋆ +

2γ

a⋆
log

a⋆

b
⇐⇒ 2(a⋆)2

γ
e

2(a⋆)2

γ =
2b2

γ
.

Recall now that, for any t > −e−1, the principal branch of the Lambert W -function is defined as the unique

solution W0(t) of the equation WeW = t. Identifying W with 2(a⋆)2/γ and t with 2b2/γ > 0, we thus find

s(γ, b) =

…
γ

2
W0

Ä
2b2

γ

ä
= b exp

Å
−1

2
W0(

2b2

γ )

ã
, (33)
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where the second equality holds because W0(t) = te−W0(t). This proves (11a). Theorem 1 further implies

that the inverse shrinkage intensity γ⋆ is the unique positive root of the equation (11b). It remains to prove

that γFR upper bounds γ⋆. Recalling that 0 ≤W0(t) = t exp(−W0(t)) ≤ t for any t ≥ 0, (11b) implies that

4ε =

p∑
i=1

W 2
0

Å
2x̂2i
γ⋆

ã
≤

p∑
i=1

4x̂4i
γ⋆2

=⇒ γ⋆ ≤

Ã
p∑

i=1

x̂4i
ε

≤ ∥Σ̂∥2F
√
ε = γFR.

This observation completes the proof. □
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