
A Max-Min-Max Algorithm for

Large-Scale Robust Optimization

Kai Tu1, Zhi Chen2, and Man-Chung Yue3

1Shenzhen University, kaitu 02@163.com

2The Chinese University of Hong Kong, zhi.chen@cuhk.edu.hk

3The University of Hong Kong, mcyue@hku.hk

April 8, 2024

Abstract

Robust optimization (RO) is a powerful paradigm for decision making under un-

certainty. Existing algorithms for solving RO, including the reformulation approach

and the cutting-plane method, do not scale well, hindering the application of RO to

large-scale decision problems. In this paper, we devise a first-order algorithm for solv-

ing RO based on a novel max-min-max perspective. Our algorithm operates directly

on the model functions and sets through the subgradient and projection oracles, which

enables the exploitation of problem structures and is especially suitable for large-scale

RO. Theoretically, we prove that the oracle complexity of our algorithm for attaining

an ε-approximate optimal solution is O(ε−3) or O(ε−2), depending on the smoothness

of the model functions. The algorithm and its theoretical results are then extended to

RO with projection-unfriendly uncertainty sets. We also show via extensive numerical

experiments that the proposed algorithm outperforms the reformulation approach, the

cutting-plane method and two other recent first-order algorithms.

Keywords. (Distributionally) Robust Optimization; Decision Making under Uncer-

tainty; First-Order Methods; Oracle Complexity; Max-Min-Max Problems.
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1 Introduction

Optimization models often require the input of some instance-specific parameters, which are

unfortunately uncertain in most applications. The uncertainty could come from errors in

estimating or measuring the parameters. Another reason for the uncertainty could be that

the parameters are intrinsically random. For example, the beamforming problem in wireless

communication (Wu et al. 2017) aims at finding the optimal transmission angle and power

concerning some objective (e.g., least interference or largest throughput) subject to cer-

tain physical constraints. The parameters required to specify the beamforming optimization

model include the transmitter and receiver antennas’ geographical locations, the obstacles

between them, and the spectrum of other network users. Misspecification of these param-

eters may lead to poor signal quality or even a breakdown of the communication network.

As one of the most powerful and popular paradigms for optimization under uncertainty,

robust optimization (RO) has attracted intense research in recent years and found applica-

tions across a wide range of areas such as machine learning (Singla et al. 2020), operations

management (Bertsimas et al. 2023), health care (Meng et al. 2015) and finance (Gregory

et al. 2011), to name a few.

To set the scene, consider the following nominal optimization problem:

min f0(x)

s.t. gm(x, zm) ≤ 0 ∀m ∈ [M ]

x ∈ X ,

where f0 is the objective function, g1, . . . , gM are the constraint functions, x ∈ RN is the

decision vector, the set X ⊆ RN models further constraints on x, and z1 . . . , zM ∈ RJm are

the parameters specifying the optimization model. In the face of uncertainty, RO postulates

that each parameter zm resides in a subset Zm ⊆ RJm—called the uncertainty set—that

represents the modeler’s belief about the possible range of the uncertain parameter zm. RO

then takes a pessimistic point of view: whatever decision is chosen, the worst parameters

over the uncertainty sets will be realized accordingly. More precisely, RO prescribes choosing
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the decision as an optimal solution to the problem

min f0(x)

s.t. max
zm∈Zm

gm(x, zm) ≤ 0 ∀m ∈ [M ]

x ∈ X .

(Robust)

Despite the wide applicability, computational approaches for solving RO are to some extent

limited and do not meet the needs of modern RO users who often require to solve high-

dimensional non-linear and/or non-smooth RO problems. The difficulty stems primarily from

the embedded optimization problems maxzm∈Zm gm(x, zm), rendering standard optimization

algorithms non-viable.

Currently, there are two dominant approaches: the reformulation approach (see, e.g.,

Ben-Tal and Nemirovski 1998) and the cutting-plane method (see, e.g., Mutapcic and Boyd

2009). Roughly speaking, the reformulation approach solves the Robust problem by con-

verting it into a deterministic reformulation—an equivalent optimization problem without

embedded optimization problems. Here, “deterministic” refers to the uncertainty-free nature

of the reformulation. This is often achieved by either solving the embedded optimization

problem analytically or replacing it with its dual problem. Since the deterministic reformula-

tion is a standard optimization problem, it can be solved by many sophisticated off-the-shelf

optimization solvers such as CPLEX, Gurobi and MOSEK. The reformulation approach

works for a large and useful class of Robust problems wherein the constraint functions

g1, . . . , gM and the uncertainty sets Z1, . . . ,ZM possess certain special structures; see Ben-

Tal and Nemirovski (1998), Ben-Tal et al. (2009).

The cutting-plane method is essentially Kelley’s cutting-plane method (Kelley 1960) spe-

cialized to RO. It is an iterative algorithm alternating between two steps: the optimization

step and the pessimization step. Given finite subsets Ẑm ⊆ Zm, m ∈ [M ], the optimization

step solves the following approximation of Robust to find a new x:

min f0(x)

s.t. max
zm∈Ẑm

gm(x, zm) ≤ 0 ∀m ∈ [M ]

x ∈ X .

3



Such an approximation has only a finite number of constraints and thus can be solved

readily. The pessimization step computes a maximizer ẑm for each embedded problem

maxzm∈Zm gm(x, zm) and if the maximum value is positive, expands the approximate un-

certainty set Ẑm by setting Ẑm ← Ẑm ∪ {ẑm}. The algorithm alternates between these two

steps until reaching a certain stopping criterion.

There are several weaknesses of existing computational approaches to RO, which sig-

nificantly hinder its development and applications. First, off-the-shelf optimization solvers

typically applied to solve the deterministic reformulations of RO are mainly based on interior-

point methods (Nesterov and Nemirovskii 1994). As evidenced by many numerical stud-

ies (Toh and Yun 2010, Liu et al. 2023), interior-point methods have relatively worse scala-

bility when compared to some other classes of optimization algorithms, such as first-order and

second-order methods, and thus are unsuitable for large-scale problems. Moreover, solvers

may ignore useful structures of the problem (e.g., sparsity or low-rank-ness of matrices),

which, if suitably exploited, can substantially improve the computational speed.

Second, as mentioned earlier, one way to eliminate the embedded maximization in Ro-

bust is to dualize it into a minimization problem. The dualization process possibly intro-

duces a large number of extra variables and/or constraints, resulting in a high-dimensional

and/or highly constrained reformulation that is hard to solve even for well-developed solvers.

Third, for many cases of gm and Zm, the reformulation technique often lifts Robust

to a more difficult and general class of optimization problems. As an example, suppose

that the constraint function is gm(x, zm) = x⊤A⊤(zm)A(zm)x + b⊤(zm)x + c(zm), with

A(zm) ∈ RL×N , b(zm) ∈ RN and c(zm) ∈ R being affine functions in zm, and the uncertainty

set Zm is a unit ball in RJm . In this case, the function gm is quadratic in both x and zm, and

the uncertainty set Zm is defined by a quadratic inequality. Its reformulation, however, is a

semidefinite programming problem (Ben-Tal and Nemirovski 1998). The quadratic nature

of the robust constraint is disregarded.

Fourth, it is well-known that the cutting-plane method may perform poorly in both the-

ory and practice (Mitchell 2009) due to instability. In particular, its iteration complexity

(i.e., the number of iterations required to achieve an ε-optimal solution) is (1 + O(ε−1))N ,

exponential in the dimension (Mutapcic and Boyd 2009, Section 5.2). Therefore, its perfor-
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mance on RO problems could potentially be equally bad. Moreover, it has been shown in a

comprehensive computational study (Bertsimas et al. 2016) that the cutting-plane method

performs on par with or even worse than the reformulation approach.

Motivated by the above discussions, we aim to develop specialized iterative algorithms for

efficiently solving large-scale Robust problems. The idea of specialized iterative algorithms

for RO is not entirely new and has been recently pursued. Using tools from online convex

optimization (Hazan 2022), Ben-Tal et al. (2015b) developed an iterative algorithm with an

iteration complexity O(ε−2) for solving RO, each iteration of which requires an optimization

step similar to that in the cutting-plane method. Extending the online convex optimization

idea, significant improvements have been obtained in the papers Ho-Nguyen and Kılınç-

Karzan 2018, 2019, where the authors developed a first-order method (each iteration requires

only first-order updates but neither the optimization nor pessimization step) with an iteration

complexity of O(ε−1 log 1
ε
). One drawback of this algorithm is that it requires a binary

search of the optimal value, which incurs extra computational overhead. In the very recent

work Postek and Shtern (2021), another first-order method, named SGSP, has been developed

based on perspective transformations (see Boyd and Vandenberghe 2004 for reference). Its

iteration complexity is O(ε−2), with respect to more complicated oracles than the ones

assumed in Ho-Nguyen and Kılınç-Karzan 2018, 2019 and this paper tough.

The point of departure of our work is the following max-min-max problem:

max
λ≥0

min
x∈X

max
z∈Z

K(λ, x, z), (Max-Min-Max)

where K(λ, x, z) = f0(x) +∑
m∈[M ] λmgm(x, zm) and Z = Z1× · · ·×ZM . This is essentially

the Lagrangian dual of the Robust problem and therefore equivalent to it under mild

assumptions (see Proposition 2 below). The advantage of our framework is that neither

complicated reformulation (as in the reformulation approach) nor perspective transformation

(as in Postek and Shtern 2021) is needed. Furthermore, the algorithm will operate directly

on the functions f0, g1, . . . , gM as well as the sets X ,Z1, . . . ,ZM through their gradient

and projection oracles, respectively. The useful structures and theoretical properties of

the functions and sets are all preserved and can be easily exploited in algorithmic design.
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However, designing and theoretically analyzing max-min-max algorithms are substantially

more difficult than those for max-min problems. Our contributions are as follows.

• We devise a first-order method, called ProM3, for solving the Max-Min-Max problem

(hence, the Robust problem) that utilizes the structure of K(λ, x, z) and operates

directly on the constituent functions and sets. Our design views Max-Min-Max as a

max-min problem

max
λ≥0

min
x∈X

L(λ, x), (1)

where L(λ, x) = max
z∈Z
K(λ, x, z) is the Lagrangian function, and adopts the framework

of alternating proximal algorithm for max-min problems. We call problem (1) the outer

saddle-point problem. Nevertheless, since the objective function L(λ, x) in the outer

saddle-point problem is itself a maximum value, efficiently updating λ and x as pre-

scribed by the standard alternating proximal algorithm is non-trivial. Our algorithm

therefore requires extra ideas. In particular, the updating step for x turns out to be a

strongly-convex-concave min-max problem with a non-linear coupling term, which we

call the inner saddle-point problem. A customized algorithm for the inner saddle-point

problem is also developed. Combining the algorithms proposed for the outer and inner

saddle-point problems leads to our algorithm ProM3 for solving RO.

• We prove that under similar conditions as in Ho-Nguyen and Kılınç-Karzan (2018,

2019), Postek and Shtern (2021), the proposed algorithms for both the outer and inner

saddle-point problems enjoy a sublinear convergence rate. Since the per-iteration cost

of different algorithms may vary, the oracle complexity—the number of calls to the

projection and subgradient oracles—for achieving an ε-optimal solution would be a

more faithful measure of computational efficiency. Based on the convergence analysis

of our algorithms for the outer and inner saddle-point problems, we prove that our

algorithm ProM3 enjoys the oracle complexity of O(ε−3), and the oracle complexity

can be strengthened to O(ε−2) if the functions f and g1, . . . , gM are all smooth.

• Third, we extend our algorithm ProM3 and convergence analysis to RO problems where

the uncertainty sets Z1, . . . ,ZM take certain intersection form and do not admit easy
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projection. Such a setting is particularly useful in distributionally robust optimization,

where the uncertainty zm is a probability vector lying in the intersection of the prob-

ability simplex and a ball defined by some norm, such as those based on the popular

(type-∞) Wasserstein distance (Mohajerin Esfahani and Kuhn 2018, Xie 2020, Bertsi-

mas et al. 2022, Gao and Kleywegt 2023) or the support space is a finite set (Ben-Tal

et al. 2013, Wiesemann et al. 2014).

We conclude the introduction with a few remarks. First, although the oracle complexity

of SGSP in Postek and Shtern (2021) is O(ε−2), as mentioned above, it relies on oracles that

are generally more complicated than those assumed in this paper. Thus, the complexity

O(ε−2) or O(ε−3) of ProM3 should not be directly compared to the complexity O(ε−2) of

SGSP. Second, contrary to saddle-point problems that have received intense research recently,

the literature on max-min-max problems, as pointed out by Polak and Royset 2003, is much

scarcer. Therefore, our work could be of independent interest to researchers working on max-

min-max problems. Third, to the best of our knowledge, strongly-convex-concave min-max

problems with a non-linear coupling term have not been thoroughly investigated yet. Our

proposed algorithm for the inner saddle-point problem and its convergence analysis partially

fill this gap in the fast-growing literature on saddle-point problems.

2 Proximal Max-Min-Max Algorithm (ProM3)

We develop a first-order algorithm for solving the Max-Min-Max problem (thus, the Ro-

bust problem), called the proximal max-min-max algorithm (ProM3). Our line of attack

to Max-Min-Max is to view it as two layers of saddle-point problems: the outer saddle-

point problem is the max-min problem (1), whereas the inner saddle-point problem is a step

towards solving the outer problem in our algorithmic framework. For simplicity, we call

the algorithms for solving the outer and inner saddle-point problems the outer and inner

algorithms, respectively. The proposed ProM3 for solving Max-Min-Max is obtained by

combining the outer and inner algorithms.
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2.1 Outer Algorithm

To describe the outer algorithm, we re-state the outer saddle-point problem (1) as

max
λ≥0

min
x∈X

{
f0(x) + λ⊤f(x)

}
, (Outer)

where f(x) = (f1(x), . . . , fM(x)) and fm(x) = maxzm∈Zm gm(x, zm) for each m ∈ [M ]. The

general algorithmic framework we adopt for the outer saddle-point problem, Outer, is an

alternating proximal update scheme:


λk+1 = argmax

λ≥0
λ⊤f(xk)− 1

2β
∥λ− λk∥2

2 = [λk + βf(xk)]+,

xk+1 = argmin
x∈X

f0(x) + (λk+1)⊤f(x) + 1
2α
∥x− xk∥2

2,
(2)

where α, β > 0 are step sizes and [a]+ = max{a, 0} for any a ∈ R. It is well-known that

scheme (2) is generally divergent. A correction for the scheme is proposed in Chambolle

and Pock (2011), which has a modified λ-update but keeps the x-update unchanged. When

specialized to our Outer problem, the modified λ-update reads

λk+1 = argmax
λ≥0

λ⊤(2f(xk)− f(xk−1))− 1
2β
∥λ− λk∥2

2 = [λk + β(2f(xk)− f(xk−1))]+.

Unfortunately, even the corrected scheme would not work in our situation, at least not

efficiently. The reason is that each component fm(xk) of the vector f(xk) is a partial

maximum of gm(xk, zm) with respect to its second argument zm. This prohibits efficient

evaluation of fm or its gradient. We circumvent this issue by approximating f in both λ-

and x-updates. Specifically, to approximate the λ-update, we replace f(xk) by

g(xk, zk) = (g1(xk, zk
1 ), . . . , gM(xk, zk

M)),

where each zk
m is an approximate maximizer of gm(xk, ·) over Zm satisfying the condition

fm(xk) = max
zm∈Zm

gm(xk, zm) ≤ gm(xk, zk
m) + θ
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for some prescribed θ > 0.

For the x-update, by noting that it is equivalent to the min-max problem

min
x∈X

max
z∈Z

f0(x) +
∑

m∈[M ]
λk+1

m gm(x, zm) + 1
2α
∥x− xk∥2

2

 ,

we invoke a min-max algorithm to solve it to a custom-made stopping condition below.

Definition 1 (Strong Approximate Saddle Point). Consider a function F : U × V → R

such that F(·, v) is σ-strongly convex on U for any v ∈ V, where σ > 0 is some constant

independent of v, and F(u, ·) is concave on V for any u ∈ U . For any ν > 0, a pair

(ũ, ṽ) ∈ U × V is said to be a strong ν-approximate saddle point of F if

F(ũ, v) ≤ F(u, ṽ)− σ

2 ∥u− ũ∥2
2 + ν ∀(u, v) ∈ U × V .

Definition 1 is stronger than the standard notion of approximate saddle point concept,

F(ũ, v) − F(u, ṽ) ≤ ν. The following proposition guarantees the existence of strong ap-

proximate saddle points under mild assumptions.

Proposition 1. Let U and V be non-empty compact convex sets and F : U × V → R be a

function such that F(·, v) is σ-strongly convex on U for any v ∈ V, where σ > 0 is some

constant independent of v, and F(u, ·) is concave on V for any u ∈ U . Then, for any ν > 0,

F has a strong ν-approximate saddle point.

The outer algorithm is formally presented in Algorithm 1, and its convergence analysis

will be presented in Section 3.1. It should be pointed out that although the alternating

proximal algorithm for saddle-point problems has been studied, the convergence rate for its

outer algorithm does not readily follow from existing results but requires certain new ideas;

see the discussion after Theorem 1 for details.

Here, we offer an observation that can improve the practical performance of the outer

algorithm. In the λ-update, we do not necessarily need to compute the approximate max-

imizer zk
m for every m ∈ [M ]. Indeed, if λk

m > 0, then by definition, z̃k
m approximately

maximizes the function gm(xk, ·) over Zm and hence, with a careful choice of θ and ν, is

precisely the zk
m that we need to compute at the beginning of the next iteration.
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Algorithm 1: Outer Algorithm.
Input : K ≥ 1, θ > 0, ν > 0, α > 0, β > 0, λ0 = 0 and x0 ∈ X .

1 for k = 0, 1, . . . , K − 1 do
2 (λ-update) For m ∈ [M ], find zk

m ∈ Zm satisfying fm(xk)− gm(xk, zk
m) ≤ θ. Set

λk+1 = [λk + β(2 g(xk, zk)− g(xk−1, zk−1))]+,

where x−1 = x0 and z−1 = z0 for the 0-th iteration.

3 (x-update) Compute a strong ν-approximate saddle point (xk+1, z̃k+1) ∈ X × Z
of the problem

min
x∈X

max
z∈Z

f0(x) +
∑

m∈[M ]
λk+1

m gm(x, zm) + 1
2α
∥x− xk∥2

2

 . (Inner)

4 end
Output: x̄K = 1

K

∑
k∈[K] xk.

2.2 Inner Algorithm

The x-update step in the outer algorithm (see step 3 of Algorithm 1) is the inner saddle-point

problem, Inner. A distinctive property of Inner is a non-linear and non-smooth coupling

term between the two variables x and z. This should be contrasted with the relatively

more common assumption that the coupling term is bilinear, i.e., x⊤Qz for some matrix Q.

Another feature of the Inner problem is that its objective function is strongly convex in x.

Saddle-point problems of this specific form have not been well studied.

Due to the generality of the coupling term, algorithmic options are limited. We adopt

the following variant of the subgradient ascent descent algorithm, which is known to enjoy

a better convergence rate in the smooth case:

zt+1 = ProjZ (zt − δ(2ζt − ζt−1)) ,

where ζt ∈ ∂z(−f0−(λk+1)⊤g)(xt, zt) and ProjU(·) denotes the projection onto a close convex

set U . As the maximization over z in the Inner problem is decomposable, the modified

subgradient step can be executed by updating each zm separately: that is, for each m ∈ [M ],

zt+1,m = ProjZm

(
zt,m − δ λk+1

m (2ζt,m − ζt−1,m)
)

,
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Algorithm 2: Inner Algorithm.
Input : T ≥ 1, δ > 0, γ > 0, x0 ∈ X , z0 ∈ Z, α > 0, xk ∈ X and λk+1 ≥ 0.

1 for t = 0, . . . , T − 1 do
2 (z-update) For m ∈ [M ], compute ζt,m ∈ ∂zm(−gm)(xt, zt,m). Set

zt+1,m = ProjZm

(
zt,m − δ λk+1

m (2ζt,m − ζt−1,m)
)

,

where ζ−1,m = ζ0,m for the 0-th iteration.

3 (x-update) For m ∈ [M ], compute ξt,0 ∈ ∂f0(xt) and ξt,m ∈ ∂xgm(xt, zt+1,m). Set
ξt = ξt,0 + λk+1

1 ξt,1 + · · ·+ λk+1
M ξt,M and

xt+1 = ProjX
(

αγ

α + γ

(
1
α

xk + 1
γ

xt − ξt

))
.

4 end
Output: x̄T = 1

T

∑
t∈[T ] xt and z̄T = 1

T

∑
t∈[T ] zt.

where ζt,m ∈ ∂zm(−gm)(xt, zt,m).

For the x-update (the subgradient descent step), we slightly tweak the standard subgra-

dient ascent descent framework to exploit the strong convexity. Specifically, in the x-update,

we linearize only the non-smooth part but retain the strongly convex quadratic term:

xt+1 = argmin
x∈X

{
ξ⊤

t (x− xt) + 1
2α
∥x− xk−1∥2

2 + 1
2γ
∥x− xt∥2

2

}

= ProjX
(

αγ

α + γ

(
1
α

xk−1 + 1
γ

xt − ξt

))
,

where ξt ∈ ∂x(f0(xt) + (λk+1)⊤g(xt, zt+1)). This tweak allows for a larger step size γ

and improves practical performance. Note that by the subdifferential sum rule, the desired

subgradient ξt can be obtained by ξt = ξt,0 + λk+1
1 ξt,1 + · · ·+ λk+1

M ξt,M , where ξt,0 ∈ ∂f0(xt)

and ξt,m ∈ ∂xgm(xt, zt+1,m) for m ∈ [M ]. The inner algorithm is formally presented in

Algorithm 2, and its convergence analysis will be presented in Section 3.2.

Although the inner algorithm and its theoretical results are developed and presented in

relation to Inner, they are actually applicable to general saddle-point problems of the form

min
u∈U

max
v∈V

F(u, v),
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where the objective function F(u, v) is strongly convex in u, concave in v and has a general

non-linear and non-smooth coupling term, and where the feasible regions U and V are non-

empty closed convex sets. In fact, our proofs for the convergence results are presented in

this general setting; see Appendix C. However, for the convenience of RO theorists and

practitioners, we customize the presentation of the inner algorithm to Inner in the main

text.

We also remark that our proposed algorithm ProM3 for RO relies only on the projection

and subgradient oracles for the sets and functions, respectively, that define the Robust

problem, and can be easily implemented. Contrary to SGSP (Postek and Shtern 2021), we

do not need to pre-compute a Slater point or an upper bound of the dual optimal solution.

Numerical experiments in Section 5 show its promising performance on large-scale instances,

in comparison with the reformulation approach, cutting-plane method, and the first-order

methods developed in Postek and Shtern (2021) and Ho-Nguyen and Kılınç-Karzan (2018).

3 Convergence Analysis

This section determines the oracle complexity of the proposed algorithm ProM3. To this end,

we first theoretically analyze the convergence behavior of the outer and inner algorithms.

We collect the assumptions needed for our theoretical development. Assumption 1 below

is standard in the RO literature (see, e.g., Ben-Tal et al. 2009).

Assumption 1. The following conditions hold.

(i) (Compactness and Convexity of Sets) The sets Z1 ⊆ RJ1 , . . . ,ZM ⊆ RJM and X ⊆ RN

are non-empty, compact and convex.

(ii) (Convexity of Functions) The function f0 : RN → R ∪ {+∞} is convex, with X ⊆

dom(f0). For any m ∈ [M ], the function gm : RN × RJm → R ∪ {±∞} satisfies that

gm(·, zm) is convex on RN for any zm ∈ Zm and gm(x, ·) is concave on RJm for any

x ∈ X , with X × Zm ⊆ dom(gm). Here, dom(·) denotes the domain.

(iii) (Existence of Slater Points) There exists x̄ ∈ X such that max
zm∈Zm

gm(x̄, zm) < 0 for any

m ∈ [M ].
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(iv) (Existence of Optimal Solutions) The Robust problem has an optimal solution.

An immediate consequence of Assumption 1 is the following equivalence.

Proposition 2. Suppose that Assumption 1 holds. Then the Robust problem is equivalent

to the Max-Min-Max problem in the sense that their optimal values are equal and that for

any optimal solution (λ⋆, x⋆, z⋆) to Max-Min-Max, x⋆ is an optimal solution to Robust.

We also need the following assumption concerning the subgradient of the functions

g1, . . . , gm and f0, which is customary in the literature of subgradient-type algorithms.

Assumption 2 (Uniformly Bounded Subdifferentials). The function f0 is subdifferentiable

on X . For any m ∈ [M ], x ∈ X and zm ∈ Zm, the functions gm(·, zm) and −gm(x, ·) are sub-

differentiable on X and Zm, respectively. There exist constants D0, D1, . . . , DM , E1, . . . , EM >

0 such that for any m ∈ [M ], zm ∈ Zm and x ∈ X ,

∥ξ0∥2 ≤ D0 ∀ξ0 ∈ ∂f0(x),

∥ξm∥2 ≤ Dm ∀ξm ∈ ∂xgm(x, zm),

∥ζm∥2 ≤ Em ∀ζm ∈ ∂zm(−gm)(x, zm).

Recall that a function is subdifferentiable at a point if its subdifferential (i.e., the set of

subgradients) at that point is non-empty (Rockafellar 1970, Section 23). It is well-known that

any convex function has a bounded non-empty subdifferential at any point in the interior

of its domain (Rockafellar 1970, Theorem 23.4). Therefore, in view of Assumption 1(ii),

Assumption 2 can only be violated on the boundary and hence very mild. Indeed, if X ⊆

int(dom(f0)) and X ×Zm ⊆ int(dom(gm)) for all m ∈ [M ] (e.g., when f0 and g1, . . . , gm are

real-valued everywhere), where int(·) denotes the interior, then Assumption 2 holds.

3.1 Outer Convergence Rate

Our first main theoretical result concerns the convergence rate of the outer algorithm.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Consider Algorithm 1 with θ = ν = 1
K

,
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α ≤ 1√∑
m∈[M ] D2

m

and β ≤ 1
2
√∑

m∈[M ] D2
m

. Then, the output x̄K satisfies

f0(x̄K)− f0(x⋆) ≤ Co,1
K

and max
m∈[M ]

[
fm(x̄K)

]
+
≤ Co,2

K

for some constants Co,1, Co,2 > 0.

Although the outer algorithm shares a similar blueprint of the alternating proximal al-

gorithm, Theorem 1 does not follow directly from existing studies but requires certain new

ideas. First, even though alternating proximal algorithms with inaccurate updates have been

studied in a number of works, the forms of inaccuracy assumed in those papers do not cover

that of our outer algorithm. Second, existing theoretical works on alternating proximal al-

gorithms primarily focus on bounding the saddle gap L(λ̄K , x⋆)−L(λ⋆, x̄K); see Chambolle

and Pock (2011, 2016). We, however, care more about the optimality gap and constraint

violation, since our ultimate goal is to solve the Robust problem.

3.2 Inner Convergence Rate

The following theorem asserts that under Assumptions 1 and 2, the inner algorithm finds a

strong ν-approximate saddle point in O(ν−2) iterations.

Theorem 2. Suppose that Assumptions 1 and 2 hold. There exists a constant Ci,1 > 0

such that if T ≥ Ci,1
ν2 and γ, δ ≤ 1√

T
, then the output (x̄T , z̄T ) of Algorithm 2 is a strong

ν-approximate saddle point.

To present our next result, we introduce the following smoothness conditions on the

functions f0, g1, . . . , gM .

Assumption 3. The function f0 is differentiable1 on X . For any m ∈ [M ], the function gm

is differentiable on X×Zm. There exist constants D′
0, D′

1, . . . , D′
M , E ′

1,1, E ′
1,2, . . . , E ′

M,1, E ′
M,2 >

1A function is differentiable on a non-open set S if it is differentiable on an open set containing S.
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0 such that for any m ∈ [M ], zm, z′
m ∈ Zm and x, x′ ∈ X , we have

∥∇f0(x)−∇f0(x′)∥2 ≤ D′
0 ∥x− x′∥2,

∥∇xgm(x, zm)−∇xgm(x′, zm)∥2 ≤ D′
m ∥x− x′∥2,

∥∇zmgm(x, zm)−∇zmgm(x′, z′
m)∥2 ≤ E ′

m,1 ∥x− x′∥2 + E ′
m,2 ∥zm − z′

m∥2.

Under Assumption 1, it can be readily shown that Assumption 3 implies Assumption 2.

The theorem below asserts that the iteration complexity of the inner algorithm can be

improved to O(ν−1) if we replace Assumption 2 by Assumption 3.

Theorem 3. Suppose that Assumptions 1 and 3 hold. There exists a constant Ci,2 > 0 such

that if T ≥ Ci,2
ν

,

γ ≤ 1

D′
0 +

∑
m∈[M ]

λk+1
m D′

m +
√√√√2

∑
m∈[M ]

(
λk+1

m E ′
m,1

)2
,

and

δ ≤ 1

2
√

2
(

max
m∈[M ]

λk+1
m E ′

m,2

)
+
√√√√2

∑
m∈[M ]

(
λk+1

m E ′
m,1

)2
,

then the output (x̄T , z̄T ) of Algorithm 2 is a strong ν-approximate saddle point.

3.3 Oracle Complexity

Since our approach assumes access to the subgradient oracles of the functions f0, g1, . . . , gM

as well as the projection oracles of the sets X ,Z1, . . . ,ZM , a faithful and popular measure of

computational efficiency would be the so-called oracle complexity—the total number of calls

of these oracles—for achieving an ε-approximate optimal solution. Here we recall that for

any ε > 0, a point x is an ε-approximate optimal solution to Robust if

f0(x)− f0(x⋆) ≤ ε and max
m∈[M ]

[fm(x)]+ ≤ ε.

The next theorem presents the oracle complexity of ProM3 by combining the convergence

rate results for the outer and inner algorithms.
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Theorem 4. Suppose that Assumptions 1 and 2 hold. Then, for any ε > 0, the oracle

complexity of ProM3 for achieving an ε-approximate optimal solution to Robust is O(ε−3).

Under similar assumptions as in Theorem 4, Postek and Shtern (2021) proved that the

oracle complexity of the algorithm SGSP is O(ε−2). However, due to the use of perspective

transformation, SGSP relies on subgradient and projection oracles that are generally more

computationally expensive. Thus, our oracle complexity results are not directly comparable

to that of Postek and Shtern (2021).

The oracle complexity can be improved if Assumption 2 is replaced by Assumption 3.

Theorem 5. Suppose that Assumptions 1 and 3 hold. Then, for any ε > 0, the oracle

complexity of ProM3 for achieving an ε-approximate optimal solution to Robust is O(ε−2).

Under similar assumptions to Theorem 5, a first-order method is developed in Ho-Nguyen

and Kılınç-Karzan (2018, 2019) via online convex optimization and proved to enjoy the or-

acle complexity O(ε−1 log 1
ε
). Nevertheless, the authors considered only low- to medium-

dimensional instances in their numerical experiments. In Section 5, we demonstrate that

when compared against the first-order methods in Postek and Shtern (2021) and Ho-Nguyen

and Kılınç-Karzan (2018, 2019) our algorithm ProM3 is substantially more stable and effi-

cient.

4 Extension to Projection-Unfriendly Uncertainty Sets

For some applications of RO, the uncertainty sets Zm take the form of an intersection and do

not admit an easy projection. Directly invoking our ProM3 in Section 2 to such RO problems

could be inefficient. Below we extend our first-order algorithm ProM3 to RO problems with

uncertainty sets of the form

Zm = Z̃m ∩

 ⋂
i∈[Im]

Zm,i

 , (3)

where for each i ∈ [Im], the set Zm,i = {zm ∈ RJm | hm,i(zm) ≤ 0} is defined by some

function hm,i.

To present the extended ProM3 and its analysis, we make the following assumption: an

adaptation of Assumption 1 to the projection-unfriendly setting.
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Assumption 4. The following conditions hold.

(i) (Compactness and Convexity of Sets) The sets Z̃1 ⊆ RJ1 , . . . , Z̃M ⊆ RJM and X ⊆ RN

are non-empty, compact and convex.

(ii) (Convexity of Functions) The function f0 : RN → R ∪ {+∞} is convex, with X ⊆

dom(f0). For any m ∈ [M ], the function gm : RN × RJm → R ∪ {±∞} satisfies that

gm(·, zm) is convex on RN for any zm ∈ Z̃m and gm(x, ·) is concave on RJm for any

x ∈ X , with X × Z̃m ⊆ dom(gm). For any m ∈ [M ] and i ∈ [Im], the function

hm,i : RJm → R ∪ {+∞} is convex, with Z̃m ⊆ dom(hm,i).

(iii) (Existence of Slater Points) There exists x̄ ∈ X such that max
zm∈Z̃m

gm(x̄, zm) < 0 for any

m ∈ [M ]. For any m ∈ [M ], there exists z̄m ∈ Z̃m such that hm,i(z̄m) < 0 for any

i ∈ [Im].

(iv) (Existence of Optimal Solutions) The Robust problem has an optimal solution.

We also need an adaptation of Assumption 2.

Assumption 5 (Uniformly Bounded Subdifferentials). The function f0 is subdifferentiable

on X . For any m ∈ [M ], x ∈ X and zm ∈ Z̃m, the functions gm(·, zm) and −gm(x, ·) are

subdifferentiable on X and Z̃m, respectively. For any m ∈ [M ] and i ∈ [Im], the function hm,i

is subdifferentiable on Z̃m. There exist constants D0, D1, . . . , DM , E1, . . . , EM , F1, . . . , FM >

0 such that for any m ∈ [M ], i ∈ [Im], zm ∈ Z̃m and x ∈ X , we have

∥ξ0∥2 ≤ D0 ∀ξ0 ∈ ∂f0(x),

∥ξm∥2 ≤ Dm ∀ξm ∈ ∂xgm(x, zm),

∥ζm∥2 ≤ Em ∀ζm ∈ ∂zm(−gm)(x, zm),

∥ηm,i∥2 ≤ Fm ∀ηm,i ∈ ∂hm,i(zm).

Similarly, the oracle complexity of the extended ProM3 can be improved when the gra-

dients of the constituent functions satisfy certain Lipschitz property.

Assumption 6. The function f0 is differentiable on X . For any m ∈ [M ], the function gm

is differentiable on X ×Z̃m. For any m ∈ [M ] and i ∈ [Im], the function hm,i is differentiable

17



on Z̃m. There exist constants D′
0, D′

1, . . . , D′
M , E ′

1,1, E ′
1,2, . . . , E ′

M,1, E ′
M,2, F ′

1, . . . , F ′
M > 0 such

that for any m ∈ [M ], i ∈ [Im], zm, z′
m ∈ Z̃m and x, x′ ∈ X , we have

∥∇f0(x)−∇f0(x′)∥2 ≤ D′
0 ∥x− x′∥2,

∥∇xgm(x, zm)−∇xgm(x′, zm)∥2 ≤ D′
m ∥x− x′∥2,

∥∇zmgm(x, zm)−∇zmgm(x′, z′
m)∥2 ≤ E ′

m,1 ∥x− x′∥2 + E ′
m,2 ∥zm − z′

m∥2,

∥∇hm,i(zm)−∇hm,i(z′
m)∥2 ≤ F ′

m ∥zm − z′
m∥2.

Note that for any m ∈ [M ], gm(·, z̄m) is continuous on X because it is real-valued and

convex on X . By the compactness of X , there exist constants G1, . . . , GM < 0 such that

gm(x, z̄m) ≥ Gm ∀x ∈ X , m ∈ [M ].

For simplicity, we denote hm(zm) = (hm,1(zm), . . . , hm,Im(zm)), Z̃ = Z̃1 × · · · × Z̃M and

M = [0, a1]I1 × · · · × [0, aM ]IM , where

am = Gm

maxi∈[Im]{hm,i(z̄m)} .

Our extension of ProM3 to projection-unfriendly uncertainty sets of the form (3) is based

on the following proposition.

Proposition 3. Consider the Robust problem with uncertainty sets Zm as in (3). Suppose

that Assumption 4 holds. Then, the Robust problem is equivalent to the problem

min f̃0(x̃)

s.t. max
zm∈Z̃m

g̃m(x̃, zm) ≤ 0 ∀m ∈ [M ]

x̃ = (x, µ1, . . . , µM) ∈ X̃ ,

(R̃obust)

where f̃0(x̃) = f0(x), X̃ = X ×M and g̃m(x̃, zm) = gm(x, zm)−µ⊤
mhm(zm) for all m ∈ [M ].

The ˜Robust problem is obtained by penalizing the constraints hm(zm) ≤ 0 in the m-th

embedded problem to its objective. It is expected to be equivalent to the original Robust

problem under suitable assumptions if we do not restrict the dual variable µm from above,
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Algorithm 3: Extended Outer Algorithm.
Input : K ≥ 1, β > 0, α > 0, ν > 0, θ > 0, λ0 = 0, x0 ∈ X and µ0 ∈M.

1 for k = 0, 1, . . . , K − 1 do
2 (λ-update) For all m ∈ [M ], find zk

m ∈ Z̃m satisfying

max
zm∈Z̃m

gm(xk, zm)− (µk
m)⊤hm(z) ≤ gm(xk, zk

m)− (µk
m)⊤hm(zk

m) + θ,

and set

λk+1
m =

[
λk

m + β
(
2 gm(xk, zk

m)− 2(µk
m)⊤hm(zk

m)− gm(xk−1, zk−1
m ) + (µk−1

m )⊤hm(zk−1
m )

)]
+

,

where x−1 = x0 and z−1 = z0 for the 0-th iteration.

3 (x̃-update) Compute a strong ν-approximate saddle point ((xk+1, µk+1), z̃k+1) of
the following problem via the Extended Inner Algorithm (Algorithm 4):

min
x∈X , µ∈M

max
z∈Z̃

f0(x) +
∑

m∈[M ]
λk+1

m

(
gm(x, zm)− µ⊤

mhm(zm)
)

+ 1
2α
∥x− xk∥2

2 + 1
2α
∥µ− µk∥2

2

,

(Ĩnner)

4 end
Output: x̄K = 1

K

∑
k∈[K] xk.

i.e., if am in the definition of M is replaced by +∞ for all m ∈ [M ]. Nevertheless, for

our algorithmic framework and theoretical results in Section 2 to be applicable, we need to

introduce an upper bound am for each µm to make the feasible region X̃ compact. What is

perhaps less trivial is that the equivalence remains after restricting the dual variable.

Applying our framework to the ˜Robust problem, we obtain an extension of ProM3

for RO problems with projection-unfriendly uncertainty sets of the form (3). To facilitate

easy usage, we present the extended outer and inner algorithms fully in terms of the basic

constituent functions and sets in Algorithms 3 and 4, respectively. The extended ProM3

enjoys the following complexity result.

Theorem 6. Consider the Robust problem with uncertainty sets Zm as in (3). Suppose

that Assumptions 4 and 5 hold. Then, for any ε > 0, the oracle complexity of extended

ProM3 (Algorithms 3 and 4 combined) for achieving an ε-approximate optimal solution to
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Algorithm 4: Extended Inner Algorithm.
Input : T ≥ 1, δ > 0, γ > 0, x0, xk ∈ X , µ0, µk ∈M, z0 ∈ Z̃ and λk+1 ≥ 0.

1 for t = 0, . . . , T − 1 do
2 (z-update) Compute ζt,m ∈ ∂zm(−gm)(xt, zt,m) and ηt,m,i ∈ ∂hm,i(zt,m) for all

m ∈ [M ] and i ∈ [Im]. Set

zt+1,m = ProjZ̃m

(
zt,m − δ λk+1

m

(
2ζt,m − ζt−1,m +

Im∑
i=1

µm,i(2ηt,m,i − ηt−1,m,i)
))

,

where ζ−1,m = ζ0,m and η−1,m,i = η0,m,i for the 0-th iteration.

3 (x̃-update) Compute ξt,0 ∈ ∂f0(xt) and ξt,m ∈ ∂xg(xt, zt+1,m) for all m ∈ [M ].
Set ξt = ξt,0 + λk+1

1 ξt,1 + · · ·+ λk+1
M ξt,M ,

xt+1 = ProjX
(

αγ

α + γ

(
1
α

xk + 1
γ

xt − ξt

))
and

µt+1,m = Proj[0,am]Im

(
αγ

α + γ

(
1
α

µk
m + 1

γ
µt,m + λk+1

m hm(zt+1,m)
))

.

4 end
Output: (x̄T , µ̄T ) = ( 1

T

∑
t∈[T ] xt,

1
T

∑
t∈[T ] µt) and z̄T = 1

T

∑
t∈[T ] zt.

Robust is O(ε−3). If Assumption 5 is replaced by Assumption 6, then the oracle complexity

is strengthened to O(ε−2).

A major part of the proof of Theorem 6 is to verify that problem ˜Robust satisfies all

the assumptions required by our results in Section 3 (i.e., Assumptions 1-3).

5 Numerical Experiments

This section explores the practical performance of the proposed algorithm ProM3 through

extensive numerical experiments. We compare its performance with the reformulation ap-

proach, the cutting-plane method, and two recently developed first-order methods by Ho-

Nguyen and Kılınç-Karzan (2018) and Postek and Shtern (2021). We use the legends “CP”

for the cutting-plane method, “OCO” for the first-order method in Ho-Nguyen and Kılınç-

Karzan (2018), and “SGSP” for the first-order method in Postek and Shtern (2021). For

the reformulation approach, we use Ref-ε, where ε is the stopping accuracy and set to the

usual accuracy level of first-order methods, 10−4 or 10−5, for a fair comparison. Furthermore,
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when we calculate the time for the reformulation approach, we calculate only the solver time

but exclude the modeling and compilation time due to the interfacing. All algorithms are

implemented in Python, and all experiments are performed on a 2.6GHz laptop with 16GB

memory.

5.1 Robust QCQP

Our first experiment concerns the following robust quadratically constrained quadratic pro-

gram appeared in Ho-Nguyen and Kılınç-Karzan (2018), Postek and Shtern (2021):

min max
z0∈Z0

g0(x, z0)

s.t. max
zm∈Zm

gm(x, zm) ≤ 0 ∀m ∈ [M ]

x ∈ X ,

(4)

where X = {x ∈ RN | ∥x∥2 ≤ 1} and for m ∈ {0} ∪ [M ], Zm = {zm ∈ RJm | ∥zm∥2 ≤ 1},

gm(x, zm) =
∥∥∥∥∥∥
Pm0 +

Jm∑
j=1

Pmjzmj

x

∥∥∥∥∥∥
2

2

+ b⊤
mx + cm.

Here, bm ∈ RN , cm ∈ R, Pmj ∈ RP ×N and zmj is the j-th entry of zm for all j ∈ [Jm]. We

generate the problem data Pmj, bm and cm in the same manner as in Postek and Shtern

(2021). For all m and j, the entries of Pmj and bm are i.i.d. uniform random variables

on [−1, 1], normalized via Pmj ← Pmj/∥[P ⊤
m0 · · ·P ⊤

mK ]⊤∥2 and bm ← bm/∥bm∥2. We fix

cm = −0.05 to ensure that problem (4) has a Slater point. Note that the each gm(x, zm)

is convex in x but not concave in zm. Nonetheless, by using the techniques in Ho-Nguyen

and Kılınç-Karzan (2018), Postek and Shtern (2021), we can transform problem (4) into an

instance of Robust satisfying all required assumptions. Note also that the reformulation in

this case is a semidefinite program (Ben-Tal and Nemirovski 1998, Theorem 3.2).

We test the algorithms on three problem dimensions: (M, N, P, Jm) = (3, 1500, 30, 30),

(M, N, P, Jm) = (40, 1500, 30, 30) and (M, N, P, Jm) = (4, 8000, 50, 50), and the correspond-

ing results are plotted in Figures 1-3, with the optimality gap |f0(x) − f0(x⋆)| and the

constraint violation maxm∈[M ][fm(x)]+ shown on the left and right panels, respectively. To
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Figure 1: (M, N, P, Jm) = (3, 1500, 30, 30).
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compute the optimality gap, for the first two cases, we take the solution returned by the

reformulation approach with the default accuracy 10−12 as the “true” optimum x⋆. However,

for the last case, the reformulation and cutting-plane methods do not work due to memory

issues. In this case, we take the solution returned by our algorithm ProM3 as x⋆, as it

achieves a much higher accuracy than the other two first-order methods. Since we cannot

keep track of the iterations of the solver in the reformulation approach, we only indicate its

total time as a vertical line.

From Figures 1 and 2, our algorithm ProM3 achieves the optimality gap 10−4 and 10−5

much faster than the reformulation approach and cutting-plane method, while the other two

competing first-order methods get stuck at the level of 10−1 to 10−2. In terms of constraint

violation, all the tested algorithms reach feasibility in a reasonable amount of time. Figure 3

shows the result for the highest dimensional and the most challenging case, which is beyond

the reach of the reformulation approach and cutting-plane method. Our algorithm ProM3

again considerably outperforms the two other first-order methods.

5.2 Robust Log-Sum-Exponential Constraint

We then consider a more involved RO problem with a highly non-linear embedded optimiza-

tion problem. This should be contrasted with the robust QCQP example in Section 5.1,

where the embedded problem’s objective function and feasible region (uncertainty set) are
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Figure 2: (M, N, P, Jm) = (40, 1500, 30, 30).
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Figure 3: (M, N, P, Jm) = (40, 8000, 50, 50).

0 200 400 600 800

CPU Time (second)

10−6

10−5

10−4

10−3

10−2

10−1

100

O
p
ti
m
al
it
y
G
ap

OCO SGSP ProM3

0 200 400 600 800

CPU Time (second)

10−5

10−4

10−3

C
on
st
ra
in
t
V
io
la
ti
on

OCO SGSP ProM3

both quadratic. Specifically, we consider the problem

min c⊤x

s.t. max
zm∈Zm

gm(x, zm) ≤ 0 ∀m ∈ [M ]

x ∈ X ,

(5)

where X = {x | −1 ≤ x ≤ 1} and for each m ∈ [M ], Zm = {zm ∈ RJm | l ≤ zm ≤ u} and

gm(x, zm) = x⊤Amzm − dm + log
zm,1 +

Jm∑
j=2

zm,j exp (b⊤
m,jx)

 .
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Figure 4: (M, N, Jm) = (5, 200, 1000).
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Figure 5: (M, N, Jm) = (5, 1000, 200).
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Such functions gm are called log-sum-exponential functions, and RO problems with robust

log-sum-exponential constraints have been considered in (Ben-Tal et al. 2015a, Example 28)

and Bertsimas and Hertog (2022). The RO problem (5) is computationally very challenging

since the robust log-sum-exponential constraint exhibits high non-linearity. To the best of

our knowledge, there is no tractable convex reformulation for the RO problem (5) (Ben-Tal

et al. 2015a, Example 28). We therefore do not compare with the reformulation approach in

this experiment. Nevertheless, all other methods can be applied. This also shows that the

scope of the reformulation approach is in general more restricted.

The data are generated as follows. We set l = 0.001 and u = 1, and the vector c is also

generated randomly with i.i.d. standard Gaussian entries. For each m ∈ [M ], denoting Bm =
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Figure 6: (M, N, Jm) = (3, 2000, 200).
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[b⊤
m,2; b⊤

m,3; · · · ; b⊤
m,Jm

], we first generate Bm with i.i.d. standard Gaussian entries and then

normalize it by Bm ← Bm/∥Bm∥2. The matrix Am is generated in the same manner as Bm.

We also set dm = maxzm∈Zm(u/∥u∥2)⊤Amzm + log
(
zm,1 +∑Jm

j=2 zm,j exp (b⊤
m,j(u/∥u∥2))

)
,

where u is a random vector with entries being i.i.d. uniform random variables on [0, 1].

We test the algorithms on three problem dimensions: (M, N, Jm) = (5, 200, 1000), (M, N, Jm) =

(5, 1000, 200) and (M, N, Jm) = (3, 2000, 200), and the corresponding results are plotted in

Figures 4-6. In this experiment, we take the solution returned by our algorithm ProM3

as the true optimal solution since it achieves a much higher accuracy than the competing

methods, as indicated in Section 5.1.

In all these three cases, our algorithm ProM3 converges much faster in terms of opti-

mality gap than all other algorithms. Also, ProM3 can achieve the accuracy level 10−5 to

10−6, whereas all other methods get stuck at the level of 10−1. In terms of constraint viola-

tion, ProM3 converges to the feasible region stably and efficiently, whereas the cutting-plane

method and SGSP struggle at the level of 100- 10−1. The sequence of iterates generated

by OCO seems to be feasible over the course of execution. This experiment shows that our

algorithm is suitable also for highly non-linear RO problems.

5.3 Distributionally Robust Newsvendor Problem

Finally, we investigate the numerical performance of our extend ProM3 for tackling RO

problems with projection-unfriendly uncertainty sets. To this end, we consider a multi-
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product newsvendor problem that aims at minimizing the total ordering cost subject to a

distributionally robust profit-risk constraint. Let there be M products. For each product m ∈

[M ], the random demand dm has N possible outcomes, d1
m, . . . , dN

m, and the corresponding

probabilities are z1
m, . . . , zN

m . We also denote by cm, vm, sm and tm the unit purchase cost,

the unit selling price, the unit salvage value and the unit storage cost, respectively. If we

purchase xm units of product m, under the demand outcome dn
m, the profit is

r(xm, dn
m) = vm min{dn

m, xm}+ sm(xm − dn
m)+ − tm(dn

m − xm)+ − cmxm. (6)

The conditional value-at-risk (CVaR) of the loss −r(xm, dn
m) at the quantile level κ ∈ [0, 1)

is given by

inf
τ∈R

{
Edm∼zm [[τ − r(xm, dm)]+]

1− κ
− τ

}
,

which represents the average of the loss −r(xm, dm) over its (1−κ)-tail region. Following the

literature on distributionally robust optimization (Ben-Tal et al. 2013, Mohajerin Esfahani

and Kuhn 2018, Yue et al. 2022, Gao and Kleywegt 2023), we assume that the probability

distribution zm of the random demand is not precisely known but lies in an ambiguity set

Zm. It is then natural to consider the following formulation, which minimizes the purchasing

cost subject to the distributionally robust loss CVaR constraint:

min c⊤x

s.t. max
zm∈Zm

{
Edm∼zm [[τm − r(xm, dm)]+]

1− κ
− τm

}
≤ ρm ∀m ∈ [M ]

x ∈ [0, 1]M , τ ∈ RM ,

(7)

where ρm > 0 is a prescribed risk threshold and r(xm, dm) is defined in (6). The ambiguity

sets Zm are taken as an intersection of the probability simplex in RN and an Euclidean

ball centered at the empirical distribution, i.e., each outcome dn
m takes probability 1/N .

Formulation (7) is thus an instance of RO problems with projection unfriendly uncertainty

sets of the form (3). The other problem parameters are generated randomly.

Similarly to Sections 5.1 and 5.2, we compare our algorithm, the extended ProM3, with

the cutting-plane method, the reformulation approach and two first-order methods from
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Figure 7: (M, N) = (30, 5000).
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the papers Ho-Nguyen and Kılınç-Karzan (2018) and Postek and Shtern (2021). However,

the paper Postek and Shtern (2021) also developed an extension of SGSP for RO problems

having uncertainty sets of the form (3). For fairness, we will invoke the extended SGSP in this

experiment. The legends “E-ProM3” and “E-SGSP” are adopted to represent the extended

ProM3 and extended SGSP, respectively. For the other competing algorithms, the legends

are the same as before. The result of a typical instance with dimension (M, N) = (30, 5000)

is plotted in Figure 7.

The experiment result indicates that our algorithm is more efficient than the competing

algorithms, reaching 10−3 for optimality gap and 10−4 for constraint violation in a few

seconds. The cutting-plane method can also reach the same level of accuracy, for a much

longer computational time though. In fact, in this experiment, the cutting-plane method

iterated only twice during the 5x seconds of execution. The missing part of the “CP” curve

at the beginning is due to the fact that the cutting-plane method does not require an initial

point x0 and an x-iterate is generated only after the first optimization step is completed.

6 Conclusion

Based on a novel max-min-max perspective, this paper devised an iterative algorithm, ProM3,

for solving RO problems. The algorithm ProM3 operates directly on the model functions

and sets through their gradient and projection oracles, respectively. Such a feature is highly
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desirable, as it allows for easy exploitation of useful problem structures, and makes the algo-

rithm particularly suitable for contemporary large-scale decision problems. Theoretically, we

proved that ProM3 enjoys strong convergence guarantees. We also extended our algorithm

to RO problems with projection-unfriendly uncertainty sets. Numerical results under dif-

ferent challenging regimes (high-dimensional, highly constrained and/or highly non-linear)

demonstrated the promising performance of ProM3 and its extension.
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A Auxiliary Results

Proof of Proposition 1. By Corollary 37.6.2 in Rockafellar (1970), F has a saddle point

(ũ, ṽ) ∈ U × V . By definition,

F(ũ, v) ≤ F(ũ, ṽ) ≤ F(u, ṽ) ∀(u, v) ∈ U × V , (8)

which implies in particular that 0 ∈ ∂uF(ũ, ṽ). By strong convexity of F(·, ṽ), we then have

F(u, ṽ) ≥ F(ũ, ṽ) + σ

2 ∥u− ũ∥2
2 ∀u ∈ U .

This, together with (8), implies that

F(ũ, v) ≤ F(u, ṽ)− σ

2 ∥u− ũ∥2
2 ∀(u, v) ∈ U × V ,

concluding the proof.

Proof of Proposition 2. Each fm is convex since it is a point-wise supremum of a family of

convex functions. Then, by Assumption 1(iii)-(iv) as well as Corollary 28.2.1 and Theo-

rem 28.3 in Rockafellar (1970), the max-min problem

max
λ≥0

min
x∈X

f0(x) +
∑

m∈[M ]
λmfm(x)


admits a saddle point solution, and it is equivalent to the Robust problem in the sense that

the saddle value equals the optimal value of the Robust problem and that for any saddle

point (λ, x) solving the max-min problem, x is an optimal solution to the Robust problem.

Unfolding the definitions of K and fm completes the proof.

B Outer Convergence Analysis

We first prove that the function f is Lipschitz continuous on X .
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Proposition 4. Suppose that Assumption 1(i)-(ii) and Assumption 2 hold. Then,

∥f(x)− f(y)∥2 ≤ Lipf∥x− y∥2 ∀x, y ∈ X ,

where Lipf =
√∑

m∈[M ] D2
m.

Proof of Proposition 4. By the definition of fm, Assumption 1(i)-(ii) and Danskin’s theorem

(see, e.g., Bertsekas 1999), we have that for any m ∈ [M ] and x ∈ X ,

∂fm(x) = conv ({ξm | ξm ∈ ∂xgm(x, z⋆
m), gm(x, z⋆

m) = fm(x)}) ,

where conv(·) denotes the convex hull. From Assumption 2, any element in ∂fm(x) has its

norm bounded by Dm. By convexity, for any x, y ∈ X and ξ̂m ∈ ∂fm(x),

fm(x)− fm(y) ≤ ξ̂⊤
m(x− y) ≤ Dm∥x− y∥2,

which implies

∥f(x)− f(y)∥2 =
√ ∑

m∈[M ]
|fm(x)− fm(y)|2 ≤

√ ∑
m∈[M ]

D2
m∥x− y∥2

2 =
√ ∑

m∈[M ]
D2

m∥x− y∥2,

completing the proof.

We then prove a technical lemma regarding the saddle-point gap.

Lemma 1. Suppose that Assumption 1(i)-(ii) and Assumption 2 hold. Consider the sequence

{(λk, xk, zk)}k∈[K] generated by Algorithm 1 with θ = 1
K

, ν = 1
K

, α ≤ 1
Lipf

and β ≤ 1
2Lipf

.

Then, for any (λ, x) ∈ RM
+ ×X , it holds that

∑
k∈[K]

(
L(λ, xk)− L(λk, x)

)
≤ ∥λ∥

2
2

2β
+∥x− x0∥2

2
2α

−∥λ− λK∥2
2

4β
+3
√

M

K

∑
k∈[K]

∥λk∥2+
(
3
√

M∥λ∥2 + 1
)

.
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Proof of Lemma 1. Fix any (λ, x) ∈ RM
+ ×X . Since L(λ, x) = f0(x) + λ⊤f(x),

∑
k∈[K]

(
L(λ, xk)− L(λk, x)

)
=

K−1∑
k=0

(
L(λ, xk+1)− L(λk+1, x)

)

=
K−1∑
k=0

(
L(λk+1, xk+1)− L(λk+1, x) + L(λ, xk+1)− L(λk+1, xk+1)

)

=
K−1∑
k=0

(
L(λk+1, xk+1)− L(λk+1, x) + (λ− λk+1)⊤f(xk+1)

)
.

(9)

Next, for any z ∈ Z, we have

K(λk+1, xk+1, z)− L(λk+1, x) ≤ K(λk+1, xk+1, z)−K(λk+1, x, z̃k+1)

= f0(xk+1) + λk+1⊤
g(xk+1, z) + 1

2α
∥xk+1 − xk∥2

2 − f0(x)− λk+1⊤
g(x, z̃k+1)− 1

2α
∥x− xk∥2

2

+ 1
2α
∥x− xk∥2

2 −
1

2α
∥xk+1 − xk∥2

2

≤ 1
2α

(
∥x− xk∥2

2 − ∥x− xk+1∥2
2 − ∥xk − xk+1∥2

2

)
+ ν,

where the first inequality (resp., equality) follows from the definition of L (resp., K) and the

second inequality from the fact that (xk+1, z̃k+1) is a strong ν-approximate saddle point of

the Inner problem (see Algorithm 1). Maximizing the left-hand side w.r.t. z over Z yields

L(λk+1, xk+1)− L(λk+1, x) ≤ 1
2α

(
∥x− xk∥2

2 − ∥x− xk+1∥2
2 − ∥xk − xk+1∥2

2

)
+ ν. (10)

Also, since λk+1 = argmaxλ≥0 λ⊤
(
2g(xk, zk)− g(xk−1, zk−1)

)
− 1

2β
∥λ − λk∥2

2, it follows

from the optimality of λk+1 and the strong concavity that

1
2β

(
∥λ− λk∥2

2 − ∥λ− λk+1∥2
2 − ∥λk − λk+1∥2

2

)
−(λ−λk+1)⊤(2g(xk, zk)−g(xk−1, zk−1)) ≥ 0.

Hence,

(λ− λk+1)⊤f(xk+1) ≤ 1
2β

(
∥λ− λk∥2

2 − ∥λ− λk+1∥2
2 − ∥λk − λk+1∥2

2

)
+(λ− λk+1)⊤

(
f(xk+1)− (2g(xk, zk)− g(xk−1, zk−1))

)
.

(11)
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The last term on the right-hand side of (11) satisfies that

(λ− λk+1)⊤
(
f(xk+1)− (2g(xk, zk)− g(xk−1, zk−1))

)
≤ (λ− λk+1)⊤(f(xk+1)− f(xk))− (λ− λk)⊤(f(xk)− f(xk−1))

+3
√

Mθ(∥λ∥2 + ∥λk+1∥2) + (λk+1 − λk)⊤(f(xk)− f(xk−1))

≤ (λ− λk+1)⊤(f(xk+1)− f(xk))− (λ− λk)⊤(f(xk)− f(xk−1))

+3
√

Mθ(∥λ∥2 + ∥λk+1∥2) +
Lipf

2 ∥λ
k+1 − λk∥2

2 +
Lipf

2 ∥x
k − xk−1∥2

2,

(12)

where the first inequality follows from the fact that

∥f(xk)− g(xk, zk)∥2 =
√ ∑

m∈[M ]
(fm(xk)− gm(xk, zk

m))2 ≤
√

Mθ ∀k ≥ 0,

and the second inequality from Proposition 4. Substituting (12) into (11), we get

(λ− λk+1)⊤f(xk+1) ≤ 1
2β

(
∥λ− λk∥2

2 − ∥λ− λk+1∥2
2 − ∥λk − λk+1∥2

2

)
+ (λ− λk+1)⊤(f(xk+1)− f(xk))− (λ− λk)⊤(f(xk)− f(xk−1))

+ 3
√

Mθ(∥λ∥2 + ∥λk+1∥2) +
Lipf

2 ∥λ
k+1 − λk∥2

2 +
Lipf

2 ∥x
k − xk−1∥2

2,
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Then, substituting the above inequality and inequality (10) into (9), we obtain

∑
k∈[K]

(
L(λ, xk)− L(λk, x)

)
≤ ∥x− x0∥2

2
2α

+ ∥λ∥
2
2

2β
− ∥x− xK∥2

2
2α

− ∥λ− λK∥2
2

2β
− ∥x

K − xK−1∥2

2α

+(λ− λK)⊤(f(xK)− f(xK−1)) + 3
√

Mθ
∑

k∈[K]
∥λk∥2 + 3

√
MθK∥λ∥2 + νK

−
(

1
2β
−

Lipf

2

) ∑
k∈[K]

∥λk − λk−1∥2
2 −

(
1

2α
−

Lipf

2

) ∑
k∈[K−1]

∥xk − xk−1∥2
2

≤ ∥x− x0∥2
2

2α
+ ∥λ∥

2
2

2β
− ∥x− xK∥2

2
2α

− ∥λ− λK∥2
2

4β
+ 3
√

Mθ
∑

k∈[K]
∥λk∥2 +

(
3
√

Mθ∥λ∥2 + ν
)

K,

−
(

1
4β
−

Lipf

2

)
∥λ− λK∥2

2 −
(

1
2α
−

Lipf

2

) ∑
k∈[K]

∥xk − xk−1∥2
2 −

(
1

2β
−

Lipf

2

) ∑
k∈[K]

∥λk − λk−1∥2
2

≤ ∥x− x0∥2
2

2α
+ ∥λ∥

2
2

2β
− ∥λ− λK∥2

2
4β

+ 3
√

M

K

∑
k∈[K]

∥λk∥2 +
(
3
√

M∥λ∥2 + 1
)

,

where the first inequality follows from telescoping and the initial conditions λ0 = 0 and

x−1 = x0, and the second from the inequality

(λ− λK)⊤(f(xK)− f(xK−1)) ≤
Lipf

2 (∥λ− λK∥2
2 + ∥xK − xK−1∥2

2),

and the third from the choice of θ, ν, α and β. This completes the proof.

The following lemma asserts that the iterator λk is upper bounded uniformly in k.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then, L admits a saddle point. More-

over, the sequence {λk}k∈[K] generated by the Algorithm 1 with θ = 1
K

, ν = 1
K

, α ≤ 1
Lipf

and

β ≤ 1
2Lipf

satisfies that for any k ∈ [K],

∥λk∥2
2 ≤ 12∥λ⋆∥2

2 + 8β

α
∥x⋆ − x0∥2

2 + 48β
√

M∥λ⋆∥2 + 576βM

Lipf

+ 16β,

where (λ⋆, x⋆) ∈ RM
+ ×X is an arbitrary saddle point of L.

Proof of Lemma 2. The existence of a saddle point of L follows from the proof of Proposi-
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tion 2. By definition, for any (λ, x) ∈ RM
+ ×X , we have

L(λ, x⋆) ≤ L(λ⋆, x⋆) ≤ L(λ⋆, x). (13)

Taking (λ, x) = (λk, xk), we then have L(λ⋆, xk) ≥ L(λk, x⋆) ∀k ∈ [K], which implies that

∥λ⋆ − λk′∥2
2

4β
≤

∑
k∈[k′]

(
L(λ⋆, xk)− L(λk, x⋆)

)
+ ∥λ

⋆ − λk′∥2
2

4β
∀k′ ∈ [K]. (14)

Using Lemma 1 with (λ, x) = (λ⋆, x⋆) and (14), we obtain

∥λ⋆ − λk′∥2
2

4β
≤ ∥λ

⋆∥2
2

2β
+ ∥x

⋆ − x0∥2
2

2α
+ 3
√

Mθ
∑

k∈[k′]
∥λk∥2 + 3

√
M∥λ⋆∥2 + 1

≤ ∥λ
⋆∥2

2
2β

+ ∥x
⋆ − x0∥2

2
2α

+
∑

k∈[k′]

(
∥λk∥2

2Lipf

16K
+ 36KMθ2

Lipf

)
+ 3
√

M∥λ⋆∥2 + 1

≤ ∥λ
⋆∥2

2
2β

+ ∥x
⋆ − x0∥2

2
2α

+
Lipf

16K

∑
k∈[k′]

∥λk∥2
2 + 36M

Lipf

+ 3
√

M∥λ⋆∥2 + 1,

where the last inequality follows from the fact that θ ≤ 1
K

. Since β ≤ 1
2Lipf

,

∥λ⋆ − λk′∥2
2 ≤ 2∥λ⋆∥2

2 + 2β∥x⋆ − x0∥2
2

α
+ 1

8K

∑
k∈[k′]

∥λk∥2
2 + 144βM

Lipf

+ 12β
√

M∥λ⋆∥2 + 4β.

For simplicity, we denote

Γ = 12∥λ⋆∥2
2 + 8β

α
∥x⋆ − x0∥2

2 + 48β
√

M∥λ⋆∥2 + 576βM

Lipf

+ 16β. (15)

Then, the above inequality implies that for any k′ ∈ [K],

∥λ⋆ − λk′∥2
2 ≤

1
4Γ− ∥λ⋆∥2

2 + 1
8K

∑
k∈[K]

∥λk∥2
2.

This, together with the fact that ∥λk′∥2
2 ≤ 2∥λ⋆ − λk′∥2

2 + 2∥λ⋆∥2
2 for all k′ ∈ [K], yields

∥λk′∥2
2 ≤

1
2Γ + 1

4K

∑
k∈[K]

∥λk∥2
2 ∀k′ ∈ [K]. (16)
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Next, we prove by induction the desired result that ∥λk′∥2 ≤ Γ for any k′ ∈ [K]. For k′ = 1,

by (16), we have

∥λ1∥2
2 ≤

1
2Γ + 1

4∥λ
1∥2

2 ≤
1
2Γ + 1

2∥λ
1∥2

2,

which implies

∥λ1∥2
2 ≤ Γ.

Next, assume ∥λk′∥2 ≤ Γ holds for some k′ ∈ [1, K). By (16) we then have

∥λk′+1∥2
2 ≤

1
2Γ + 1

4K

k′+1∑
k=1
∥λk∥2

2 = 1
2Γ + 1

4∥λ
k′+1∥2

2 + 1
4K

k′∑
k=1
∥λk∥2

2

≤ 1
2Γ + 1

4∥λ
k′+1∥2

2 + 1
4K

k′∑
k=1

Γ ≤ 3
4Γ + 1

4∥λ
k′+1∥2

2,

which concludes our proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1. To bound f0(x̄K)−f0(x⋆), we let λ̄K = 1
K

∑
k∈[K] λk. By the convexity

of L(λ, ·) and −L(·, x), and Lemmas 1 and 2, we have that for any (λ, x) ∈ RM
+ ×X ,

L(λ, x̄K)− L(λ̄K , x) ≤ 1
K

(
∥λ∥2

2
2β

+ ∥x− x0∥2
2

2α
+ 3
√

MΓ + 3
√

M∥λ∥2 + 1
)

, (17)

where Γ is the constant defined in (15). Then,

f0(x̄K)− f0(x⋆) = L(0, x̄K)− L(λ⋆, x⋆) ≤ L(0, x̄K)− L(λ̄, x⋆)

≤ 1
K

(
∥x⋆ − x0∥2

2
2α

+ 3
√

MΓ + 1
)

,

where the equality follows from the definition of L, the first inequality from (13), and the

second inequality from (17).

Next, we bound maxm∈[M ][fm(x̄K)]+. By the definition of L and (13), we have

f0(x̄K)− f0(x⋆) ≥ −
∑

m∈[M ]
λ⋆

mfm(x̄K) ≥ −
∑

m∈[M ]
λ⋆

m[fm(x̄K)]+. (18)
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Let λ̂ be the vector defined by λ̂m = 1 + λ⋆
m if fm(x̄K) > 0, and λ̂m = 0 otherwise, for any

m ∈ [M ]. By the definition of L, (13) and (17), we have

f0(x̄K)− f0(x⋆) +
∑

m∈[M ]
λ̂mfm(x̄K) = L(λ̂, x̄K)− L(λ⋆, x⋆)

≤L(λ̂, x̄K)− L(λ̄K , x⋆) ≤ 1
K

∥λ̂∥2
2

2β
+ ∥x

⋆ − x0∥2
2

2α
+ 3
√

MΓ + 3
√

M∥λ̂∥2 + 1
 ,

which, together with (18), yields

max
m∈[M ]

[fm(x̄K)]+ ≤
∑

m∈[M ]
[fm(x̄K)]+ +

∑
m∈[M ]

λ⋆
m[fm(x̄K)]+ + f0(x̄K)− f0(x⋆)

= f0(x̄K)− f0(x⋆) +
∑

m∈[M ]
λ̂mfm(x̄K) ≤ 1

K

∥λ̂∥2
2

2β
+ ∥x

⋆ − x0∥2
2

2α
+ 3
√

MΓ + 3
√

M∥λ̂∥2 + 1
 .

This completes the proof.

C Inner Convergence Analysis

To analyze the Inner problem, we consider general saddle-point problems of the form

min
u∈U

max
v∈V

F̂(u, v) + σ

2 ∥u− û∥2
2, (19)

where F̂(u, v) is convex in u and concave in v (possibly non-linear, non-smooth), U and V

are non-empty compact convex sets, and û ∈ U . We solve it by the following algorithm.

Proposition 5. Suppose that U and V are nonempty compact convex sets, that F̂(·, v) is

convex on U for any v ∈ V and F̂(u, ·) is concave on V for any u ∈ U , and that there exist

C1, C2 > 0 such that ∥ξ∥2 ≤ C1 and ∥ζ∥2 ≤ C2 for any (u, v) ∈ U × V, ξ ∈ ∂uF̂(u, v)

and ζ ∈ ∂v(−F̂)(u, v). Then, the output (ūT , v̄T ) of Algorithm 5 with γ, δ ≤ 1√
T

is a strong

O(T −1/2)-approximate saddle point of problem (19).

39



Algorithm 5: Modified Projected Subgradient Ascent Descent.
Input : T ≥ 1, δ > 0, γ > 0, u0 ∈ U , v0 ∈ V .

1 for t = 0, . . . , T − 1 do
2 (v-update) Compute ζt ∈ ∂v(−F̂)(ut, vt). Set

vt+1 = ProjV (vt − δ (2ζt − ζt−1)) .

3 (u-update) Compute ξt ∈ ∂uF̂(ut, vt+1). Set

ut+1 = ProjU
(

1
1 + γσ

(γσû + ut − γξt)
)

.

4 end
Output: ūT = 1

T

∑
t∈[T ] ut and v̄T = 1

T

∑
t∈[T ] vt.

Proof of Proposition 5. We first note that

F̂(ut+1, v)− F̂(u, vt+1) = F̂(ut+1, v)− F̂(ut+1, vt+1) + F̂(ut+1, vt+1)− F̂(ut, vt+1)

+ F̂(ut, vt+1)− F̂(u, vt+1).
(20)

Since F̂(·, v) is convex on U for any v ∈ V and F̂(u, ·) is concave on V for any u ∈ U , for

any ξ′
t ∈ ∂uF̂(ut+1, vt+1) and ζt+1 ∈ ∂v(−F̂)(ut+1, vt+1), we get the three inequalities

F̂(ut+1, v)− F̂(ut+1, vt+1) ≤ −(v − vt+1)⊤ζt+1

F̂(ut+1, vt+1)− F̂(ut, vt+1) ≤ −(ut − ut+1)⊤ξ′
t

F̂(ut, vt+1)− F̂(u, vt+1) ≤ −(u− ut)⊤ξt

(21)

Noting that

ut+1 = argmin
u∈U

ξ⊤
t (u− ut) + σ

2∥u− û∥2
2 + 1

2γ
∥u− ut∥2

2

vt+1 = argmin
v∈V

(2ζt − ζt−1)⊤(v − vt) + 1
2δ
∥v − vt∥2

2
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and using their optimality conditions, we get the two inequalities

0 ≤(u− ut+1)⊤ξt + 1
2γ

(∥u− ut∥2
2 − ∥u− ut+1∥2

2 − ∥ut+1 − ut∥2
2)

+ σ

2 (∥u− û∥2
2 − ∥u− ut+1∥2

2 − ∥ut+1 − û∥2
2) and

0 ≤(v − vt+1)⊤ (2ζt − ζt−1) + 1
2δ
∥v − vt∥2

2 −
1
2δ
∥v − vt+1∥2

2 −
1
2δ
∥vt+1, vt∥2

2.

(22)

Combining (20), (21) and (22) yields

F̂(ut+1, v)− F̂(u, vt+1) ≤
1

2γ
∥u− ut∥2

2 −
1

2γ
∥u− ut+1∥2

2 −
1

2γ
∥ut+1 − ut∥2

2

+ 1
2δ
∥v − vt∥2

2 −
1
2δ
∥v − vt+1∥2

2 −
1
2δ
∥vt+1 − vt∥2

2

+ σ

2 ∥u− û∥2
2 −

σ

2 ∥u− ut+1∥2
2 −

σ

2 ∥ut+1 − û∥2
2

+ (v − vt+1)⊤ (2ζt − ζt+1 − ζt−1) + (ut − ut+1)⊤(ξt − ξ′
t).

(23)

Using the bounds on the subgradients and the fact

(vt+1 − vt)⊤(ζt−1 − ζt) ≤
δ

2∥ζt−1 − ζt∥2
2 + 1

2δ
∥vt+1 − vt∥2

2 ≤ 2δC2
2 + 1

2δ
∥vt+1 − vt∥2

2,

we obtain the two inequalities

(ut − ut+1)⊤(ξt − ξ′
t) ≤

1
2γ
∥ut − ut+1∥2

2 + 2γC2
1 and

(v − vt+1)⊤ (2ζt − ζt+1 − ζt−1) ≤ (v − vt+1)⊤(ζt − ζt+1)− (v − vt)⊤(ζt−1 − ζt)

+ 2δC2
2 + 1

2δ
∥vt+1 − vt∥2

2,

(24)

Substituting (24) into (23), we get

F̂(ut+1, v)− F̂(u, vt+1) + σ

2 (∥ut+1 − û∥2
2 + ∥ut+1 − u∥2

2)

≤ σ

2 ∥u− û∥2
2 + 1

2γ
∥u− ut∥2

2 + 1
2δ
∥v − vt∥2

2 −
1

2γ
∥u− ut+1∥2

2 −
1
2δ
∥v − vt+1∥2

2

+ (v − vt+1)⊤(ζt − ζt+1)− (v − vt)⊤(ζt−1 − ζt) + 2γC2
1 + 2δC2

2 .

Summing over t = 0, · · · , T − 1 and using the convexity of F̂(·, v), −F̂(u, ·) and ∥ · ∥2
2, we
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have that for any (u, v) ∈ U × V ,

F̂(ūT , v)− F̂(u, v̄T ) ≤ ∥u− u0∥2
2

2γT
+ ∥v − v0∥2

2
2δT

+ 2C2
1γ + 2C2

2δ

+ σ

2 (∥u− û∥2
2 − ∥ūT − û∥2

2 − ∥u− ūT∥2
2)

≤ O(T −1/2) + σ

2 (∥u− û∥2
2 − ∥ūT − û∥2

2 − ∥u− ūT∥2
2),

where the first inequality follows from the definitions of ūT and v̄T , the bounds on subgra-

dients, and the inequality

(v − vT )⊤(ζT −1 − ζT ) ≤ δ

2∥ζT −1 − ζT∥2
2 + 1

2δ
∥v − vT∥2

2 ≤ 2C2
2δ + 1

2δ
∥v − vT∥2

2, (25)

and the second inequality follows from γ = δ = T −1/2. This completes the proof.

Proposition 6. Instate the conditions of Proposition 5. Suppose furthermore the existence

of Lipuu, Lipvv, Lipvu > 0 such that for any u, u′ ∈ U , v, v′ ∈ V,

∥∇uF̂(u, v)−∇uF̂(u′, v)∥2 ≤ Lipuu∥u− u′∥2 and

∥∇vF̂(u, v)−∇vF̂(u′, ṽ)∥2 ≤ Lipvv∥v − v′∥2 + Lipvu∥u− u′∥2.
(26)

Then, the output (ūT , v̄T ) of Algorithm 5 with γ ≤ 1
Lipuu+Lipvu

and δ ≤ 1
2Lipvv+Lipvu

is a strong

O(T −1)-approximate saddle point of problem (19).

Proof of Proposition 6. Using the Lipschitz property of the gradient of F̂ , we can improve

the second inequality in (21) to

F̂(ut+1, vt+1)− F̂(ut, vt+1) ≤ (ut+1 − ut)⊤∇uF̂(ut, vt+1) + Lipuu

2 ∥ut − ut+1∥2
2,

the two inequalities in (24) to

(ut − ut+1)⊤(ξt − ξ′
t) = 0 and

(v − vt+1)⊤ (2ζt − ζt+1 − ζt−1) ≤ (v − vt+1)⊤(ζt − ζt+1)− (v − vt)⊤(ζt−1 − ζt)

+ Lipvv + Lipvu

2 ∥vt − vt+1∥2
2 + Lipvv

2 ∥vt − vt−1∥2
2 + Lipvu

2 ∥ut − ut−1∥2
2,
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and inequality (25) to

(v−vT )⊤(ζT −1−ζT ) ≤ Lipvv + Lipvu

2 ∥v−vT∥2
2 + Lipvv

2 ∥vT −vT −1∥2
2 + Lipvu

2 ∥uT −uT −1∥2
2.

Following the proof of Proposition 5 but using the above improved inequalities, we get

F̂(ūT , v)− F̂(u, v̄T ) + σ

2
(
∥ūT − û∥2

2 + ∥u− ūT∥2
2 − ∥u− û∥2

2

)
≤ 1

2Tγ
∥u− u0∥2

2 + 1
2δT
∥v − v0∥2

2 −
1

2Tγ
∥u− uT∥2

2 −
1
T

(
1

2γ
− Lipuu + Lipvu

2

)
T∑

t=1
∥ut − ut−1∥2

2

− 1
T

(
1
2δ
− 2Lipvv + Lipvu

2

)
T∑

t=1
∥vt − vt−1∥2

2 −
1
T

(
1
2δ
− Lipvv + Lipvu

2

)
∥vT −1 − vT∥2

2

≤O(T −1),

where the second inequality follows from γ ≤ 1
Lipuu+Lipvu

and δ ≤ 1
2Lipvv+Lipvu

.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The Inner problem is a special case of problem (19), with σ = 1/α,

U = X , V = Z and

F̂(x, z) = f0(x) +
∑

m∈[M ]
λk+1

m gm(x, zm). (27)

When applied to the Inner problem, Algorithm 2 reduces to Algorithm 5. By Assumption 1,

we see that F̂(·, z) is convex on X for any z ∈ Z and F̂(x, ·) is concave on Z for any x ∈ X .

Also, by Assumption 2, we have that the subdifferentials ∂xF̂(x, z) and ∂z(−F̂)(x, z) are

both uniformly bounded on X ×Z. The desired result thus follows from Proposition 5.

Theorem 3 can be proved in a similar vein.

Proof of Theorem 3. The proof is similar to that of Theorem 2, except that we need to verify

the Lipschitz property (26) and determine the step-sizes. Recall that for the Inner problem,
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F̂(x, z) is given by (27). Therefore, by Assumption 3,

∥∇xF̂(x, z)−∇xF̂(x′, z)∥2

= ∥∇xf0(x)−∇xf0(x′)∥2 +
∑

m∈[M ]
λk+1

m ∥∇xgm(x, zm)−∇xgm(x′, zm)∥2

≤

D′
0 +

∑
m∈[M ]

λk+1
m D′

m

 ∥x− x′∥2,

which implies Lipuu = (D′
0 +∑

m∈[M ] λk+1
m D′

m).

Next, by Assumption 3,

∥∇zF̂(x, z)−∇zF̂(x′, z′)∥2

=
√ ∑

m∈[M ]
λk+1

m
2∥∇zmgm(x, zm)−∇zmgm(x′, z′

m)∥2
2

≤
√√√√ ∑

m∈[M ]
λk+1

m
2
(
E ′

m,1∥x− x′∥2 + E ′
m,2∥zm − z′

m∥2
)2

≤
√

2
∑

m∈[M ]
λk+1

m
2E ′

m,1
2∥x− x′∥2 +

√
2 max

m∈[M ]
λk+1

m
2E ′

m,2
2∥z − z′∥2,

which implies Lipvu =
√

2∑m∈[M ] λk+1
m

2E ′
m,1

2 and Lipvv =
√

2 maxm∈[M ] λk+1
m

2E ′
m,2

2. The

desired result thus follows from Proposition 6.

D Oracle Complexity

Proof of Theorem 4. Note that the outer algorithm does not directly rely on the projection

or subgradient oracles, but only through the invocation of the inner algorithm. Also, each

iteration of the inner algorithm requires at most a constant number of calls to the oracles,

independent of ε. Therefore, to prove the oracle complexity of ProM3, it suffices to count

the aggregated number of inner iterations.

Consider Algorithms 1 and 2 with K = O(ε−1) and other algorithmic parameters chosen

as in Theorems 1 and 2. By Theorem 1, ProM3 produces an ε-approximate optimal solution

to the Robust problem in O(ε−1) outer iterations. So, we need to invoke the inner algorithm
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O(ε−1) times. Each invocation needs to compute a strong ε-approximate saddle point, which

by Theorem 2, requires O(ε−2) inner iterations. We thus conclude that the oracle complexity

is O(ε−1)O(ε−2) = O(ε−3).

Proof of Theorem 5. The proof is the same as that of Theorem 4 (except that we use The-

orem 3 instead of Theorem 2) and hence omitted.

E Proofs for Extended ProM3

Proof of Proposition 3. Consider the Robust problem with projection-unfriendly uncer-

tainty sets (3). For any fixed m ∈ [M ] and x ∈ X , the embedded maximization problem in

the robust constraint reads

max gm(x, zm)

s.t. hm,i(zm) ≤ 0 ∀i ∈ [Im]

zm ∈ Z̃m.

(28)

By Assumption 4(i)-(iii), we have that Z̃m is a non-empty, compact and convex set, that

gm(x, ·) is concave and hm,i is convex for all i ∈ [Im], and that a Slater point for problem (28)

exists. Therefore, strong duality holds and problem (28) is equivalent to its Lagrangian dual

min
µm∈RIm

+

max
zm∈Z̃m

gm(x, zm)− µ⊤
mhm(zm) (29)

Replacing the embedded problem by problem (29), we see that the Robust problem is

equivalent to
min f0(x)

s.t. max
zm∈Z̃m

gm(x, zm)− µ⊤
mhm(zm) ≤ 0 ∀m ∈ [M ]

x ∈ X , µm ∈ RIm
+ ∀m ∈ [M ].

It remains to prove that any optimal solution (x⋆, µ⋆) ∈ X × RI1+···+IM
+ satisfies that

µ⋆
m,i ≤

Gm

maxi∈[Im]{hm,i(z̄m)} ∀i ∈ [Im], m ∈ [M ].

45



To do so, let (x⋆, µ⋆) ∈ X × RI1+···+IM
+ be any optimal solution. Then, for any m ∈ [M ],

max
zm∈Z̃m

gm(x⋆, zm)− µ⋆
m

⊤hm(zm) ≤ 0,

which implies that

gm(x⋆, z̄m) ≤ µ⋆
m

⊤hm(z̄m).

Noting that µ⋆
m,i hm,i(z̄m) ≤ 0 for all i ∈ [Im], we have

µ⋆
m,i hm,i(z̄m) ≥ µ⋆

m
⊤hm(z̄m) ≥ gm(x⋆, z̄m) ≥ Gm.

By Assumption 4(iii), hm,i(z̄m) < 0 for all i ∈ [Im]. Therefore, for any i ∈ [Im],

µ⋆
m,i ≤

Gm

hm,i(z̄m) ≤
Gm

maxi∈[Im]{hm,i(z̄m)} .

This completes the proof.

Proof of Theorem 6. The extended ProM3 is the algorithm obtained by applying ProM3

(from Section 2) to the problem ˜Robust. It suffices is to verify that problem ˜Robust

satisfies Assumptions 1, 2 and 3 in the sense that these assumptions hold when the data

(f0, g1, . . . , gM ,X ,Z1, . . . ,ZM) is replaced by (f̃0, g̃1, . . . , g̃M , X̃ , Z̃1, . . . , Z̃M).

Assumption 1(i): The non-emptiness, compactness and convexity of the sets Z̃1, . . . , Z̃M

follow directly from Assumption 4(i). Recall that X̃ = X ×M, whereM = [0, a1]I1 × · · · ×

[0, aM ]IM . Assumption 4(i) therefore implies also that X̃ is non-empty, compact and convex.

Assumption 1(ii): The objective function f̃0(x̃) = f0(x) is obviously convex and finite-

valued on X̃ = X×M, since f0 is convex and finite-valued on X by Assumption 4(ii). Also by

Assumption 4(ii), gm(·, zm) is convex for any zm ∈ Z̃m and gm(x, ·) is concave for any x ∈ X ,

and hm,i is convex and finite-valued on Z̃m for all i ∈ [Im] and m ∈ [M ]. Together with the

boundedness of M, this implies that the function g̃m(x̃, zm) = gm(x, zm) − µ⊤
mhm(zm) is

finite-valued on X̃ × Z̃m and satisfies that g̃m(·, zm) is convex for any z ∈ Z̃m and g̃m(x̃, ·)

is concave for any x̃ = (x, µ) ∈ X̃ .

Assumption 1(iii): By Assumption 4(iii), there exists x̄ such that max
zm∈Z̃m

gm(x̄, zm) < 0
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for any m ∈ [M ]. Therefore, max
zm∈Z̃m

g̃m((x̄, 0), zm) = max
zm∈Z̃m

gm(x̄, zm) < 0.

Assumption 1(iv): It follows directly from Assumption 4(iv).

Assumption 2: By Assumption 5, we have that f̃0(x̃) = f0(x) is subdifferentiable

on X̃ = X × M. Recall that g̃m(x̃, zm) = gm(x, zm) − µ⊤
mhm(zm) for any m ∈ [M ].

By Assumption 5, we have that g̃m(x̃, zm) is subdifferentiable in x̃ = (x, µ) on X̃ and

−g̃m(x̃, zm) subdifferentiable in zm on Z̃m.

We then bound the subdifferentials. First, any subgradient of f̃0 at x̃ ∈ X̃ is of the

form ξ̃0 = (ξ0, 0) for some ξ0 ∈ ∂f0(x). So, by Assumption 5, the subdifferential ∂f̃0(x̃) is

uniformly bounded by D̃0 = D0. Next, for any m ∈ [M ] and zm ∈ Z̃m, any subgradient of

g̃m(·, zm) is of the form ξ̃m = (ξm, 0,−hm(zm), 0) for some ξm ∈ ∂xgm(x, zm). Since Hm is

real-valued and convex on Z̃m, there exists a constant Hm > 0 such that ∥hm(zm)∥ ≤ Hm for

all zm ∈ Zm. Noting that ∥ξ̃m∥ ≤
√
∥ξm∥2 + ∥hm(zm)∥2, by Assumption 5, the subdifferen-

tial ∂x̃g̃m(x̃, zm) is uniformly bounded by D̃m =
√

D2
m + H2

m. Finally, for any m ∈ [M ] and

x̃ = (x, µ) ∈ X̃ , any subgradient of (−g̃m)(x̃, ·) is of the form ζ̃m = ζm−
∑

i∈[Im] µm,iηm,i for

some ηm,1 ∈ ∂hm,1(zm), . . . , ηm,Im ∈ ∂hm,Im(zm) and ζm ∈ ∂zm(−gm)(x, zm). Noting that

∥ζ̃m∥ ≤ ∥ζm∥+∑
i∈[Im] µm,i∥ηm,i∥, by Assumption 5, the subdifferential ∂zm(−g̃m)(x̃, zm) is

uniformly bounded by Ẽm = Em + amImFm.

Assumption 3: Since f̃0(x̃) = f0(x) for any x̃ ∈ X̃ , it follows from Assumption 6

that ∇f̃0 is Lipschitz continuous on X̃ . For any m ∈ [M ], z ∈ Z̃m and x̃ = (x, µ) ∈

X̃ , ∇x̃g̃m(x̃, zm) = (∇xgm(x, zm), 0,−hm(zm), 0) and ∇zm g̃m(x̃, zm) = ∇zmgm(x, zm) −∑
i∈[Im] µm,i∇hm,i(zm). By Assumption 6, ∇x̃g̃m(·, zm) is Lipschitz continuous on X̃ for any

fixed zm ∈ Z̃m, and ∇zm g̃m is jointly Lipschitz continuous on X̃ × Z̃m.

The proof is completed.
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