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Abstract

In this paper, we establish the following perturbation result concerning the singular values
of a matrix: Let A, B ∈ Rm×n be given matrices, and let f : R+ → R+ be a concave function
satisfying f(0) = 0. Then, we have

min{m,n}∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣ ≤

min{m,n}∑

i=1

f(σi(A−B)),

where σi(·) denotes the i–th largest singular value of a matrix. This answers an open ques-
tion that is of interest to both the compressive sensing and linear algebra communities. In
particular, by taking f(·) = (·)p for any p ∈ (0, 1], we obtain a perturbation inequality for
the so–called Schatten p–quasi–norm, which allows us to confirm the validity of a number
of previously conjectured conditions for the recovery of low–rank matrices via the popular
Schatten p–quasi–norm heuristic. We believe that our result will find further applications,
especially in the study of low–rank matrix recovery.

Keywords: Singular value perturbation inequality; Schatten quasi–norm; Low–rank matrix
recovery; Exact and robust recovery

1 Introduction

The problem of low–rank matrix recovery, with its many applications in computer vision [12, 20],
trace regression [31, 23], network localization [19, 21], etc., has been attracting intense research
interest in recent years. In a basic version of the problem, the goal is to reconstruct a low–rank
matrix from a set of possibly noisy linear measurements. To achieve this, one immediate idea is
to formulate the recovery problem as a rank minimization problem:

minimize rank(X)
subject to ‖A(X)− y‖2 ≤ η, X ∈ Rm×n,

(1)
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where the linear measurement map A : Rm×n → Rl, the vector of measurements y ∈ Rl, and
the noise level η ≥ 0 are given. However, Problem (1) is NP–hard in general, as it includes the
NP–hard vector cardinality minimization problem [30] as a special case. Moreover, since the
rank function is discontinuous, Problem (1) can be challenging from a computational point–of–
view. To circumvent this intractability, a popular approach is to replace the objective of (1)
with the so–called Schatten (quasi)–norm of X. Specifically, given a matrix X ∈ Rm×n and a
number p ∈ (0, 1], let σi(X) denote the i–th largest singular value of X and define the Schatten
p–quasi–norm of X by

‖X‖p =




min{m,n}∑

i=1

σp
i (X)




1/p

.

One can then consider the following Schatten p–quasi–norm heuristic for low–rank matrix recov-
ery:

minimize ‖X‖p
p

subject to ‖A(X)− y‖2 ≤ η, X ∈ Rm×n.
(2)

Note that the function X 7→ ‖X‖p
p is continuous for each p ∈ (0, 1]. Thus, algorithmic tech-

niques for continuous optimization can be used to tackle Problem (2). The Schatten quasi–norm
heuristic is motivated by the observation that ‖X‖p

p → rank(X) as p ↘ 0. In particular, when
p = 1, the function X 7→ ‖X‖1 defines a norm—known as the nuclear norm—on the set of m×n
matrices, and we obtain the well–known nuclear norm heuristic [13]. In this case, Problem (2) is
a convex optimization problem that can be solved efficiently by various algorithms; see, e.g., [18]
and the references therein. On the other hand, when p ∈ (0, 1), the function X 7→ ‖X‖p only
defines a quasi–norm. In this case, Problem (2) is a non–convex optimization problem and is
NP–hard in general; cf. [16]. Nevertheless, a number of numerical algorithms implementing the
Schatten p–quasi–norm heuristic (where p ∈ (0, 1)) have been developed (see, e.g., [28, 32, 21, 26]
and the references therein), and they generally have better empirical recovery performance than
the (convex) nuclear norm heuristic.

From a theoretical perspective, a natural and fundamental question concerning the aforemen-
tioned heuristics is about their recovery properties. Roughly speaking, this entails determining
the conditions under which a given heuristic can recover, either exactly or approximately, a
solution to Problem (1). A first study in this direction was done by Recht, Fazel, and Par-
rilo [35], who showed that techniques used to analyze the `1 heuristic for sparse vector recovery
(see [40] for an overview and further pointers to the literature) can be extended to analyze the
nuclear norm heuristic. Since then, recovery conditions based on the restricted isometry property
(RIP) and various nullspace properties have been established for the nuclear norm heuristic; see,
e.g., [33, 7, 6, 22] for some recent results. In fact, many recovery conditions for the nuclear norm
heuristic can be derived in a rather simple fashion from their counterparts for the `1 heuristic
by utilizing a perturbation inequality for the nuclear norm [33].

Compared with the nuclear norm heuristic, recovery properties of the Schatten p–quasi–norm
heuristic are much less understood, even though the corresponding heuristic for sparse vector
recovery, namely the `p heuristic with p ∈ (0, 1), has been extensively studied; see, e.g., [42,
44, 34, 43] and the references therein. As first pointed out in [33] and later further elaborated
in [25], the difficulty seems to center around the following question, which concerns the validity
of certain perturbation inequality for the Schatten p–quasi–norm:
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Question (Q) Given a number p ∈ (0, 1) and matrices A,B ∈ Rm×n, does the inequality

min{m,n}∑

i=1

|σp
i (A)− σp

i (B)| ≤
min{m,n}∑

i=1

σp
i (A−B) (3)

hold?

Indeed, assuming the validity of (3), one can establish a necessary and sufficient nullspace–based
condition for the recovery of low–rank matrices via the Schatten p–quasi–norm heuristic [33].
This, coupled with the arguments in [33], would then allow one to translate various recovery
conditions for the `p heuristic directly into those for the Schatten p–quasi–norm heuristic [33, 25].
Thus, there is a strong motivation to study Question (Q).

Although the authors of [33] are widely credited with formulating Question (Q) and pointing
out its relevance in low–rank matrix recovery, the question itself has been studied long before the
interest in low–rank matrix recovery takes shape. For instance, in 1988, Ando [1] showed, among
other things, that the perturbation inequality (3) is valid when A,B are positive semidefinite.
However, a complete answer to Question (Q) remains elusive. In a recent work [46], Zhang and
Qiu claimed to have resolved Question (Q) in the affirmative by establishing a subadditivity
inequality for singular values [46, Corollary 2.3]. However, as we shall explain in Section 2, there
is a critical gap in the proof.1 Thus, to the best of our knowledge, Question (Q) remains open;
see also [3, Section 7].

In this paper, we show that the perturbation inequality (3) is indeed valid, thereby giving the
first complete answer to Question (Q). In fact, we shall prove the following more general result:

Theorem 1 Let A,B ∈ Rm×n be given matrices. Suppose that f : R+ → R+ is a concave
function satisfying f(0) = 0. Then, we have

min{m,n}∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣ ≤

min{m,n}∑

i=1

f(σi(A−B)). (4)

Since x 7→ |x|p is concave on R+ for any p ∈ (0, 1], by taking f(·) = (·)p in (4), we immediately
obtain (3). It is interesting to compare Theorem 1 with a result of Ando [1], which states that the
perturbation inequality (4) is valid when f : R+ → R+ is an operator concave function2 satisfying
f(0) = 0 and A,B are positive semidefinite. An essential ingredient in Ando’s proof is the fact
that every non–negative operator concave function on R+ admits an integral representation,
which provides an explicit handle on the function. However, even though operator concavity
implies concavity, the converse is not true in general. Moreover, the assumption that A and B
are positive semidefinite is crucial to Ando’s arguments. Thus, in order to prove Theorem 1, a
substantially different approach is needed. Our proof, which is given in Section 3, is inspired in
part by the work of Fiedler [14] and makes heavy use of matrix perturbation theory. In Section 4,
we shall discuss some applications of the perturbation inequality (3) in the study of low–rank
matrix recovery. Finally, we close with some concluding remarks in Section 5.

The following notations will be used throughout this paper. Let Sn (resp. On) denote the
set of n × n real symmetric (resp. orthogonal) matrices. For an arbitrary matrix Z ∈ Rm×n,

1This is also confirmed by the authors of [46] in a private correspondence.
2For the definition of operator concavity, see [4, Chapter V.1].
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we use σ(Z) and σi(Z) to denote its vector of singular values and i–th largest singular value,
respectively. Similarly, for an arbitrary symmetric matrix Z ∈ Sn, we use λi(Z) to denote
its i–th largest eigenvalue. The spectral norm (i.e., the largest singular value) and Frobenius
norm of Z are denoted by ‖Z‖ and ‖Z‖F , respectively. Given a vector v, we use Diag(v) to
denote the diagonal matrix with v on the diagonal. Similarly, given matrices A1, . . . , Al, we use
BlkDiag(A1, . . . , Al) to denote the block diagonal matrix whose i–th diagonal block is Ai, for
i = 1, . . . , l. We say that Z = O(α) if ‖Z‖/α is uniformly bounded as α → 0.

2 Gap in the Zhang–Qiu Proof

In this section, we review the main steps in Zhang and Qiu’s proof of the perturbation inequal-
ity (4) and explain the gap in the proof. To set the stage, let us recall two classic perturbation
inequalities:

(a) (Lidskii–Wielandt Eigenvalue Perturbation Inequality) Let A, B ∈ S l be given. Then, for
any k ∈ {1, . . . , l} and i1, . . . , ik ∈ {1, . . . , l} satisfying 1 ≤ i1 < · · · < ik ≤ l,

k∑

j=1

(λij (A)− λij (B)) ≤
k∑

i=1

λi(A−B); (5)

see, e.g., [39, Chapter IV, Theorem 4.8].

(b) (Mirsky Singular Value Perturbation Inequality) Let Ā, B̄ ∈ Rm×n be given. Set l̄ =
min{m,n}. Then, for any k ∈ {1, . . . , l̄} and i1, . . . , ik ∈ {1, . . . , l̄} satisfying 1 ≤ i1 <
· · · < ik ≤ l̄,

k∑

j=1

∣∣σij (Ā)− σij (B̄)
∣∣ ≤

k∑

i=1

σi(Ā− B̄); (6)

see, e.g., [39, Chapter IV, Theorem 4.11].

Mirsky [29] observed that (6) is a simple consequence of (5), and his argument goes as follows.
Let

A =
[

0 Ā
ĀT 0

]
∈ Sm+n, B =

[
0 B̄

B̄T 0

]
∈ Sm+n, (7)

and suppose without loss of generality that m ≤ n. It is well–known (see Fact 1 below) that 0
is an eigenvalue of both A and B of multiplicity n−m, and the remaining eigenvalues of A and
B are ±σ1(Ā), . . . ,±σm(Ā) and ±σ1(B̄), . . . ,±σm(B̄), respectively. Thus, we have

{λi(A)− λi(B) : i = 1, . . . , m + n} =
{± ∣∣σi(Ā)− σi(B̄)

∣∣ : i = 1, . . . ,m
} ∪ {0}.

In particular, by substituting (7) into (5), we obtain (6).
Motivated by the above argument, Zhang and Qiu first established a Lidskii–Wielandt–type

singular value perturbation inequality by extending a matrix–valued triangle inequality of Bourin
and Uchiyama [5] and invoking Horn’s inequalities for characterizing the eigenvalues of sums of

4



Hermitian matrices [15]. Specifically, they showed that for any concave function f : R+ → R+

and matrices A,B ∈ Rm×n, the inequality

k∑

j=1

(
f(σij (A))− f(σij (B))

) ≤
k∑

i=1

f(σi(A−B)) (8)

holds for any k ∈ {1, . . . , l̄} and i1, . . . , ik ∈ {1, . . . , l̄} satisfying 1 ≤ i1 < · · · < ik ≤ l̄, where l̄ =
min{m,n}; cf. [46, Theorem 2.1]. Then, they claimed that the perturbation inequality (4) follows
by applying Mirsky’s argument above to (8); cf. [46, Corollary 2.3]. However, the reasoning in
this last step is flawed. Indeed, the inequality (8) is concerned with singular values, while the
inequality (5) is concerned with eigenvalues. In particular, for the matrices A,B given in (7),
we only have

{f(σi(A))− f(σi(B)) : i = 1, . . . , m + n} =
{
f(σi(Ā))− f(σi(B̄)) : i = 1, . . . , l̄

} ∪ {0},
and there is no guarantee that the set on the right–hand side (RHS) contains any element of the
set {∣∣f(σi(Ā))− f(σi(B̄))

∣∣ : i = 1, . . . , l̄
}

.

Hence, Mirsky’s argument does not lead to the desired conclusion. In fact, we do not see a
straightforward way of proving (4) using (8). The difficulty stems in part from the fact that f
is always non–negative, while the eigenvalues in (5) can be negative. This suggests that (8) is
fundamentally different from (5).

3 Proof of the Perturbation Inequality (4)

In this section, we give the first complete proof of the perturbation inequality (4). The proof
can be divided into six steps.

Step 1: Reduction to the symmetric case.
A first observation concerning (4) is that we can restrict our attention to the case where both

A and B are symmetric. To prove this, consider the linear operator Ξ : Rm×n → Sm+n given by

Ξ(Z) =
[

0 Z
ZT 0

]
.

We shall make use of the following standard fact, which establishes a relationship between the
singular value decomposition of an arbitrary matrix Z ∈ Rm×n and the spectral decomposition
of Ξ(Z) ∈ Sm+n:

Fact 1 (cf. [39, Chapter I, Theorem 4.2]) Let Z ∈ Rm×n be a given matrix with m ≤ n. Consider
its singular value decomposition Z = U

[
Σ 0

]
V T , where U ∈ Rm×m and V ∈ Rn×n are

orthogonal and Σ = Diag(σ1(Z), . . . , σm(Z)) ∈ Sm is diagonal. Write V =
[

V 1 V 2
]
, where

V 1 ∈ Rn×m and V 2 ∈ Rn×(n−m). Then, the matrix Ξ(Z) admits the spectral decomposition

Ξ(Z) = W




Σ 0 0
0 −Σ 0
0 0 0


W T ,

5



where

W =
1√
2

[
U U 0
V 1 −V 1

√
2V 2

]

is orthogonal. In particular, 0 is an eigenvalue of Ξ(Z) of multiplicity n−m, and the remaining
eigenvalues of Ξ(Z) are ±σ1(Z), . . . ,±σm(Z).

Fact 1 implies that the i–th largest singular value of Ξ(Z) is given by

σi(Ξ(Z)) =

{
σdi/2e(Z) for i = 1, . . . , 2m,

0 for i = 2m + 1, . . . ,m + n.
(9)

This in turn implies the following result:

Proposition 1 The inequality (4) holds for all matrices A,B ∈ Rm×n iff it holds for all sym-
metric matrices A, B ∈ S l.

Proof The “only if” part of the proposition is clear. Suppose then the inequality (4) holds for
all symmetric matrices A, B ∈ S l. Consider arbitrary matrices A,B ∈ Rm×n, and without loss
of generality, suppose that m ≤ n. By assumption and the linearity of Ξ, we have

m+n∑

i=1

∣∣f(σi(Ξ(A)))− f(σi(Ξ(B)))
∣∣ ≤

m+n∑

i=1

f(σi(Ξ(A−B))).

Together with (9), this implies that

2
m∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣ =

2m∑

i=1

∣∣f(σi(Ξ(A)))− f(σi(Ξ(B)))
∣∣

≤
2m∑

i=1

f(σi(Ξ(A−B)))

= 2
m∑

i=1

f(σi(A−B)).

This completes the proof. tu
In view of Proposition 1, we will focus on proving Theorem 1 for the case where A,B are
symmetric. Our strategy is to first establish (4) for those functions f that, in addition to the
assumptions in Theorem 1, satisfy a regularity condition called well–behavedness (the precise
definition will be given shortly). Then, we show how the well–behavedness assumption can be
removed using a limiting argument, thereby completing the proof of Theorem 1.

Step 2: Local behavior of a well–behaved f .
To introduce the notion of well–behavedness, let us first recall some basic facts from convex

analysis. Let f : R+ → R+ be a concave function satisfying f(0) = 0. Then, for any xl, xr, yl, yr ≥
0 satisfying xl < xr, yl < yr, xl ≤ yl, and xr ≤ yr, we have

f(xr)− f(xl)
xr − xl

≥ f(yr)− f(xl)
yr − xl

≥ f(yr)− f(yl)
yr − yl

; (10)
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cf. [37, Chapter 5, Lemma 16]. This implies that for each x > 0, the right–hand derivative of f
at x, which is defined as

df (x) = lim
τ↘0

f(x + τ)− f(x)
τ

,

exists and is finite. Moreover, we have f(y) ≤ f(x) + df (x)(y − x) for any y ≥ 0. Now, define
the extension d̄f : R+ → R ∪ {+∞} of df : R++ → R by

d̄f (x) =





df (x) for x > 0,

lim sup
t↘0

df (t) for x = 0.

Using (10), it can be easily verified that d̄f (y) ≥ d̄f (x) for all x ≥ y ≥ 0. We say that f is
well–behaved if d̄f (x) < +∞ for all x ≥ 0. Note that for a well–behaved f , we have

f(y) ≤ f(x) + d̄f (x)(y − x) (11)

for all x, y ≥ 0.
Consider an arbitrary symmetric matrix M ∈ Sn. We say that π = (π1, . . . , πn) is a spectrum–

sorting permutation of M if π is a permutation of {1, . . . , n} and σi(M) = |λπi(M)| for i =
1, . . . , n. Note that there can be more than one spectrum–sorting permutation of M , as multiple
eigenvalues can have the same magnitude. Now, given a spectrum–sorting permutation π of M ,
let M = UΛUT be a spectral decomposition of M , where Λ = Diag(λπ1(M), . . . , λπn(M)) ∈ Sn.
Furthermore, define Mπ = UΛπUT , where Λπ = Diag(s1, . . . , sn) ∈ Sn and

si = sgn(λπi(M)) · d̄f (σi(M)) for i = 1, . . . , n.

Our immediate objective is to prove the following theorem, which is the crux of our proof of the
perturbation inequality (4):

Theorem 2 Let M, N ∈ Sn be given symmetric matrices. Suppose that f : R+ → R+ is a
well–behaved concave function satisfying f(0) = 0. Then, for any spectrum–sorting permutation
π of M and any scalar t > 0,

n∑

i=1

f(σi(M + tN)) ≤
n∑

i=1

f(σi(M)) + t · tr (NMπ) + O(t2).

Note that if tr(NMπ) < 0, then for sufficiently small t > 0, the RHS of the above inequality is
strictly smaller than

∑n
i=1 f(σi(M)). We shall make use of this simple observation later.

The proof of Theorem 2 relies on the following fact concerning the singular values of a
perturbed symmetric matrix:

Fact 2 (cf. [27, Section 5.1]) Let M,N ∈ Sn be given symmetric matrices. Suppose that M has
l +1 distinct singular values for some l ∈ {0, 1 . . . , n− 1}, and that they are arranged as follows:

σi0(M) = · · · = σi1−1(M)
> σi1(M) = · · · = σi2−1(M)

...
> σij (M) = · · · = σij+1−1(M)

...
> σil(M) = · · · = σil+1−1(M).

(12)
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Here, the indices i0, i1, . . . , il, il+1 ∈ {1, . . . , n + 1} satisfy 1 = i0 < i1 < · · · < il < il+1 = n + 1.
Then, for any t > 0, j ∈ {0, 1, . . . , l}, and i ∈ {ij , . . . , ij+1 − 1}, we have

σi(M + tN) = σi(M) + t · λi−ij+1

(
(Qj)T Ξ(N)Qj

)
+ O(t2), (13)

where Qj is a 2n × (ij+1 − ij) matrix whose columns are the eigenvectors associated with the
ij–th to the (ij+1 − 1)–st eigenvalue of Ξ(M).

Proof of Theorem 2 Using (11) and (13), we have

f(σi(M + tN)) ≤ f(σi(M)) + t · d̄f (σi(M)) · λi−ij+1

(
(Qj)T Ξ(N)Qj

)
+ O(t2) (14)

for any t > 0, j ∈ {0, 1, . . . , l}, and i ∈ {ij , . . . , ij+1 − 1}. Hence,

n∑

i=1

f(σi(M + tN)) ≤
n∑

i=1

f(σi(M)) + t
l∑

j=0

ij+1−1∑

i=ij

d̄f (σi(M)) · λi−ij+1

(
(Qj)T Ξ(N)Qj

)
+ O(t2)

=
n∑

i=1

f(σi(M)) + t
l∑

j=0

d̄f (σij (M)) · tr (
(Qj)T Ξ(N)Qj

)
+ O(t2),

where the last equality follows from (12). Now, fix a spectrum–sorting permutation π of M . Let
M = UΣV T be a singular value decomposition of M , where Σ = Diag(σ1(M), . . . , σn(M)) ∈
Sn. Here, we take ui to be the eigenvector corresponding to the eigenvalue λπi(M) and vi =
sgn(λπi(M))ui, where ui (resp. vi) is the i–th column of U (resp. V ), for i = 1, . . . , n. Then, by
Fact 1, the matrix Qj can be put into the form

Qj =
1√
2

[
U j

V j

]
,

where U j (resp. V j) is the n × (ij+1 − ij) matrix formed by the ij–th to (ij+1 − 1)–st columns
of U (resp. V ), for j = 0, 1, . . . , l. Upon letting

D(M) = BlkDiag
(
d̄f (σi0(M))Ii1−i0 , . . . , d̄f (σil(M))Iil+1−il

) ∈ Rn×n

and noting, because of (12), that D(M) = Diag(d̄f (σ1(Z)), . . . , d̄f (σn(Z))), we compute

l∑

j=0

d̄f (σij (M)) · tr (
(Qj)T Ξ(N)Qj

)
=

l∑

j=0

d̄f (σij (M)) · tr (
(V j)T N(U j)

)

= tr
(
NUD(M)V T

)

= tr(NMπ).

This completes the proof. tu
In the sequel, we fix A,B ∈ Sn and let A = UAΣAUT

A and B = UBΣBUT
B be spectral

decompositions of A and B, respectively.
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Step 3: Lower bounding the RHS of (4) via an optimization problem.
Consider a function f that satisfies the assumptions in Theorem 2. Let V = UT

AUB ∈ On.
Then, we can lower bound the RHS of (4) as follows:

n∑

i=1

f(σi(A−B)) =
n∑

i=1

f
(
σi

(
ΣA − V ΣBV T

)) ≥ inf
Q∈On

n∑

i=1

f
(
σi

(
ΣA −QΣBQT

))
. (15)

We claim that the minimum value above can be attained. This follows from the compactness of
On and the following result:

Proposition 2 For each i ∈ {1, . . . , n}, the function f(σi(·)) is continuous on Sn.

Proof Let i ∈ {1, . . . , n} be fixed. By [39, Chapter IV, Theorem 4.11], σi(·) is 1–Lipschitz
continuous. Moreover, since f(·) is concave on R+, it is continuous on R++ [38, Lemma 2.70].
Thus, f(σi(·)) is continuous at all Z ∈ Sn satisfying σi(Z) > 0. Now, let Z ∈ Sn be such that
σi(Z) = 0. Then, using (11) and the fact that f(0) = 0, we have

|f(σi(Y ))− f(σi(Z))| ≤ ∣∣d̄f (0)
∣∣ · |σi(Y )− σi(Z)|

for all Y ∈ Sn. This, together with the 1–Lipschitz continuity of σi(·), implies that f(σi(·)) is
continuous at all Z ∈ Sn satisfying σi(Z) = 0 as well. tu

Hence, let Q0 ∈ On be the orthogonal matrix that attains the minimum value in (15). Clearly,
in order to establish the perturbation inequality (4) for f , it suffices to show that

n∑

i=1

f
(
σi

(
ΣA −Q0ΣBQT

0

)) ≥
n∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣.

Towards that end, we need the following result, which concerns the structure of the minimizer Q0:

Theorem 3 Let B̄ = Q0ΣBQT
0 ∈ Sn and C = ΣA − B̄ ∈ Sn. Then, for any spectrum–sorting

permutation π of C, B̄ and Cπ commute.

Proof Suppose that B̄ and Cπ do not commute for some spectrum–sorting permutation π of
C. Set D = CπB̄ − B̄Cπ 6= 0. It is easy to verify that D is skew–symmetric, i.e., D = −DT .
Hence, we have V (t) = exp(tD) ∈ On for all t ∈ R. Since f is well–behaved, we compute

n∑

i=1

f
(
σi

(
ΣA − V (t)B̄V (t)T

))
=

n∑

i=1

f
(
σi

(
ΣA − (I + tD)B̄(I − tD) + O(t2)

))

≤
n∑

i=1

f
(
σi

(
ΣA − B̄ + t(B̄D −DB̄)

))

+
n∑

i=1

[
d̄f

(
σi

(
ΣA − B̄ + t(B̄D −DB̄)

)) ·O(t2)
]

(16)

≤
n∑

i=1

f(σi(C)) + t · tr (
(B̄D −DB̄)Cπ

)
+ O(t2), (17)
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where (16) follows from (11) and the 1–Lipschitz continuity of σi(·) for all i ∈ {1, . . . , n},
while (17) follows from Theorem 2 and the fact that

d̄f

(
σi

(
ΣA − B̄ + t(B̄D −DB̄)

)) ≤ d̄f (0) < +∞
for all t ∈ R and i ∈ {1, . . . , n}. Using the identity tr(XY T ) = tr(Y T X), which is valid for
arbitrary matrices of the same dimensions, we have

tr
(
(B̄D −DB̄)Cπ

)
= tr

(−DDT
)

= −‖D‖2
F < 0. (18)

It follows from (17) and (18) that for sufficiently small t > 0,

n∑

i=1

f
(
σi

(
ΣA − V (t)B̄V (t)T

))
<

n∑

i=1

f(σi(C)),

which contradicts the minimality of Q0. Hence, we have D = 0, or equivalently, B̄ and Cπ

commute. tu
In view of Theorem 3, the definition of Cπ, and the fact that two symmetric matrices commute

iff they are simultaneously diagonalizable, it is tempting to claim that B̄ and C also commute.
This conclusion, which is equivalent to ΣAB̄ = B̄ΣA, would be more useful, as it reveals the
relationship that the minimizer Q0 imposes on the eigenvalues of A and B. Unfortunately, the
claim is not true in general, for there may exist a set of eigenvectors of Cπ that is not a set of
eigenvectors of C. To illustrate this possibility, consider the following example:

Example 1 Let f : R+ → R+ be given by f(x) = x. Then, by definition, we have d̄f (x) = 1 for
all x ≥ 0. Now, let

B̄ =
[

1 3
3 4

]
, C =

[
2 −1
−1 2

]
.

It is easy to verify that λ1(C) = 3 and λ2(C) = 1. Thus, for any spectrum–sorting permutation
π of C, we have Cπ = I, which clearly commutes with B̄. However, we have

B̄C =
[ −1 5

2 5

]
6=

[ −1 2
5 5

]
= CB̄.

The above example shows that B̄ and C need not commute when λπi(C) 6= λπj (C) for some
spectrum–sorting permutation π of C and i, j ∈ {1, . . . , n}, but the corresponding eigenvalues
of Cπ, namely, si = sgn(λπi(C)) · d̄f (|λπi(C)|) and sj = sgn(λπj (C)) · d̄f (|λπj (C)|), are equal.
To circumvent this difficulty, we will first focus on the case where the function f satisfies the
assumptions in Theorem 2 and has strictly decreasing slope; i.e., d̄f is strictly decreasing on R+

(recall that the concavity of f on R+ implies that d̄f is non–increasing on R+). The assumption
on d̄f is sufficient to guarantee that si = sgn(λπi(C)) · d̄f (|λπi(C)|) and sj = sgn(λπj (C)) ·
d̄f (|λπj (C)|) are distinct whenever λπi(C) and λπj (C) are. Consequently, C and Cπ have the
same sets of eigenvectors, which, together with Theorem 3, implies that B̄ and C commute.
After establishing the perturbation inequality (4) for this case, we will show how the assumption
on d̄f can be removed using a limiting argument.

Step 4: Establishing the perturbation inequality (4) under well–behavedness and strictly decreasing
slope assumptions.
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Throughout this step, let f be a function that satisfies the assumptions in Theorem 2 and
has strictly decreasing slope; i.e., d̄f is strictly decreasing on R+. We have already seen from the
discussion following the proof of Theorem 3 that B̄ and C commute. Using the definition of C,
this implies that ΣAB̄ = B̄ΣA; i.e., ΣA and B̄ commute.

Now, suppose that A has distinct eigenvalues. Since ΣA and B̄ commute and ΣA is diagonal,
it is straightforward to show that B̄ must also be diagonal. In particular, we can write B̄ =
Diag(λθ1(B), . . . , λθn(B)) for some permutation θ = (θ1, . . . , θn) of {1, . . . , n}. Using this and [3,
Proposition 1], we obtain

n∑

i=1

f(σi(A−B)) ≥
n∑

i=1

f
(
σi

(
ΣA −Q0ΣBQT

0

))

=
n∑

i=1

f (σi (ΣA −Diag(λθ1(B), . . . , λθn(B))))

≥
n∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣; (19)

i.e., the perturbation inequality (4) holds in this case. On the other hand, suppose that A
has repeated eigenvalues. By considering a sequence {Al}∞l=1 of matrices in Sn with distinct
eigenvalues such that Al → A and using (19), we have

n∑

i=1

f(σi(Al −B)) ≥
n∑

i=1

∣∣f(σi(Al))− f(σi(B))
∣∣

for l = 1, 2, . . .. This, together with Proposition 2, implies that the perturbation inequality (4)
holds in this case as well.

Step 5: Relaxing the strictly decreasing slope assumption.
Now, suppose that f satisfies only the assumptions in Theorem 2. Our strategy is to approx-

imate f using a sequence of functions that not only satisfy the assumptions in Theorem 2 but
also have strictly decreasing slope. The perturbation inequality (4) for f would then follow from
the result in Step 4 and a limiting argument. To begin, for each δ > 0, define f̃δ : R+ → R+ by

f̃δ(x) = f(x)− δ2 exp(−x/δ) + δ2.

The functions {f̃δ}δ>0 have the following properties:

Proposition 3 The following hold:

(a) For each δ > 0, f̃δ is concave on R+ and f̃δ(0) = 0.

(b) For each δ > 0, we have d̄f̃δ
(x) = d̄f (x) + δ exp(−x/δ) for all x ≥ 0. In particular, f̃δ is

well–behaved and d̄f̃δ
is strictly decreasing on R+ for each δ > 0.

(c) For each x ≥ 0, we have f̃δ(x) → f(x) as δ ↘ 0.

Proof

11



(a) Consider a fixed δ > 0. By direct substitution, we have f̃δ(0) = 0. Moreover, it is easy to
verify that x 7→ −δ2 exp(−x/δ) + δ2 is concave on R+. It follows that f̃δ, which is the sum
of two concave functions on R+, is concave on R+.

(b) Consider a fixed δ > 0. By definition, for any x > 0, we have

d̄f̃δ
(x) = df̃δ

(x)

= lim
τ↘0

(
f(x + τ)− f(x)

τ
+

δ2(exp(−x/δ)− exp(−(x + τ)/δ))
τ

)

= df (x) + δ exp(−x/δ).

Moreover,

d̄f̃δ
(0) = lim sup

t↘0
df̃δ

(t) = lim sup
t↘0

(df (t) + δ exp(−t/δ)) = d̄f (0) + δ.

It follows that d̄f̃δ
(x) = d̄f (x) + δ exp(−x/δ) for all x ≥ 0. In particular, since f is well–

behaved and δ exp(−x/δ) ≤ δ for all x ≥ 0, we conclude that f̃δ is well–behaved.

Finally, since d̄f is non–increasing on R+ and x 7→ δ exp(−x/δ) is strictly decreasing on
R+, we conclude that d̄f̃δ

is strictly decreasing on R+.

(c) For each x ≥ 0, we have f̃δ(x)− f(x) = −δ2 exp(−x/δ) + δ2. It follows that f̃δ(x) → f(x)
as δ ↘ 0.

tu
Proposition 3(a,b) implies that for each δ > 0, the function f̃δ satisfies the assumptions in

Theorem 2 and has strictly decreasing slope. Hence, the result in Step 4 implies that for each
δ > 0, we have

n∑

i=1

f̃δ(σi(A−B)) ≥
n∑

i=1

∣∣∣f̃δ(σi(A))− f̃δ(σi(B))
∣∣∣ .

By taking δ ↘ 0 and applying Proposition 3(c), we conclude that the perturbation inequality (4)
holds for f as well.

Step 6: Relaxing the well–behavedness assumption and completing the proof of Theorem 1.
To complete the proof of Theorem 1, it remains to relax the well–behavedness assumption.

Towards that end, let f : R+ → R+ be a concave function satisfying f(0) = 0. For each δ > 0,
define fδ : R+ → R+ by

fδ(x) = min
{

f(δ)
δ

x, f(x)
}

.

The following result shows that the functions {fδ}δ>0 satisfy the assumptions in Theorem 2 and
converge pointwise to f :

Proposition 4 The following hold:

(a) For each δ > 0, fδ is concave on R+ and fδ(0) = 0.
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(b) For each δ > 0, we have

d̄fδ
(x) =





d̄f (x) for x ≥ δ,

f(δ)
δ

for 0 ≤ x < δ.

In particular, fδ is well–behaved.

(c) For each x ≥ 0, we have fδ(x) → f(x) as δ ↘ 0.

Proof

(a) Consider a fixed δ > 0. By direct substitution, we have fδ(0) = 0. Moreover, since fδ is
the pointwise minimum of two concave functions on R+, it is concave on R+.

(b) Consider a fixed δ > 0. The concavity of f on R+ and the inequalities in (10) imply that

fδ(x) =





f(x) for x ≥ δ,

f(δ)
δ

x for 0 ≤ x ≤ δ.
(20)

Thus, for 0 < x < δ, we have

d̄fδ
(x) = dfδ

(x) = lim
τ↘0

1
τ

(
f(δ)

δ
((x + τ)− x)

)
=

f(δ)
δ

.

On the other hand, for x ≥ δ, we have

d̄fδ
(x) = dfδ

(x) = lim
τ↘0

f(x + τ)− f(x)
τ

= df (x).

It follows that
d̄fδ

(0) = lim sup
t↘0

dfδ
(t) =

f(δ)
δ

.

Since δ > 0 is fixed, we have d̄fδ
(0) < +∞, which implies that fδ is well–behaved.

(c) Clearly, we have fδ(0) = f(0) = 0 for all δ > 0. Hence, fδ(0) → f(0) as δ ↘ 0. Now,
let x > 0 be fixed. Using (20), we have fδ(x) = f(x) for all δ ∈ (0, x). It follows that
fδ(x) → f(x) as δ ↘ 0, as desired.

tu
Proposition 4(a,b) and the result in Step 5 imply that for each δ > 0, we have

n∑

i=1

fδ(σi(A−B)) ≥
n∑

i=1

∣∣fδ(σi(A))− fδ(σi(B))
∣∣.

Thus, by taking δ ↘ 0 and applying Proposition 4(c), we conclude that the perturbation in-
equality (4) holds for f , which completes the proof of Theorem 1.

13



4 Applications in Low–Rank Matrix Recovery

As pointed out in [33], one important consequence of the perturbation inequality (3) is that it
connects the sufficient conditions for the recovery of low–rank matrices via the Schatten p–quasi–
norm heuristic to those for the recovery of sparse vectors via the `p heuristic. For completeness’
sake, let us briefly elaborate on the connection here.

For a given number p ∈ (0, 1] and integer k ≥ 1, let S p
k be the set of s × t matrices (where

t ≥ k) such that whenever A ∈ S p
k , every vector x̄ ∈ Rt with ‖x̄‖0 = |{i : x̄i 6= 0}| ≤ k and

y = Ax̄ ∈ Rs can be exactly recovered by solving the following optimization problem:

minimize ‖x‖p
p

subject to Ax = y.
(21)

We then have the following theorem:

Theorem 4 (cf. [33, Theorem 1]) Let A : Rm×n → Rl be a given linear operator with m ≤ n.
Suppose that A possesses the following property for some number p ∈ (0, 1] and integer k ≥ 1:

Property (E). For any orthogonal matrices U ∈ Om and V ∈ On, the matrix AU,V ∈ Rl×m

induced by the linear map x 7→ A (
U

[
Diag(x) 0

]
V T

)
belongs to S p

k .

Then, every matrix X̄ ∈ Rm×n with rank(X̄) ≤ k and y = A(X̄) ∈ Rl can be exactly recovered
by solving Problem (2) with η = 0.

The proof of Theorem 4 relies on the following two results, the latter of which is established
using the perturbation inequality (3):

Fact 3 (cf. [17]) Let A ∈ Rs×t be a given matrix, p ∈ (0, 1] be a given number, and k ≥ 1 be a
given integer. Then, we have A ∈ S p

k iff

k∑

i=1

|z↓i |p <
t∑

i=k+1

|z↓i |p for all z ∈ N (A)\{0},

where z↓ ∈ Rt is the vector whose i–th entry is the i–th largest (in absolute value) entry of z,
and N (A) = {z ∈ Rt : Az = 0} is the nullspace of A.

Proposition 5 Let A : Rm×n → Rl be a given linear operator with m ≤ n, p ∈ (0, 1] be a given
number, and k ≥ 1 be a given integer. Then, every matrix X̄ ∈ Rm×n with rank(X̄) ≤ k and
y = A(X̄) ∈ Rl can be exactly recovered by solving Problem (2) with η = 0 iff

k∑

i=1

σp
i (Z) <

m∑

i=k+1

σp
i (Z) (22)

holds for all Z ∈ N (A)\{0}.

Proof Suppose that (22) holds for all Z ∈ N (A)\{0}. Let X̄, X̄ ′ ∈ Rm×n be such that
rank(X̄) ≤ k and A(X̄) = A(X̄ ′) = y. Clearly, we have Z̄ = X̄ ′ − X̄ ∈ N (A). If Z̄ 6= 0,
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or equivalently, if X̄ ′ 6= X̄, then by taking f(·) = (·)p in Theorem 1 and using the fact that
rank(X̄) ≤ k, we obtain

m∑

i=1

σp
i (X̄ + Z̄) ≥

m∑

i=1

∣∣σp
i (X̄)− σp

i (Z̄)
∣∣

=
k∑

i=1

∣∣σp
i (X̄)− σp

i (Z̄)
∣∣ +

m∑

i=k+1

∣∣σp
i (X̄)− σp

i (Z̄)
∣∣

≥
k∑

i=1

σp
i (X̄)−

k∑

i=1

σp
i (Z̄) +

m∑

i=k+1

σp
i (Z̄)

>
m∑

i=1

σp
i (X̄).

Since X̄ ′ = X̄ + Z̄ is arbitrary, this shows that X̄ is the unique optimal solution to Problem (2)
when η = 0.

Conversely, suppose there exists a Z̄ ∈ N (A)\{0} such that
∑k

i=1 σp
i (Z̄) ≥ ∑m

i=k+1 σp
i (Z̄).

Let Z̄ = U
[

Diag(σ(Z̄)) 0
]
V T be its singular value decomposition, and define

X̄ = −U
[

Σk
1(Z̄) 0

]
V T , X̄ ′ = U

[
Σm

k+1(Z̄) 0
]
V T ,

where

Σk
1(Z̄) = Diag

(
σ1(Z̄), . . . , σk(Z̄), 0, . . . , 0

) ∈ Sm,

Σm
k+1(Z̄) = Diag

(
0, . . . , 0, σk+1(Z̄), . . . , σm(Z̄)

) ∈ Sm.

Clearly, we have rank(X̄) ≤ k. Moreover, since A(X̄ ′−X̄) = A(Z̄) = 0, we have A(X̄) = A(X̄ ′).
Now, using the definition of Z̄, we compute

‖X̄‖p
p =

k∑

i=1

σp
i (Z̄) ≥

m∑

i=k+1

σp
i (Z̄) = ‖X̄ ′‖p

p.

This shows that X̄ is not the unique optimal solution to Problem (2) when η = 0 and y = A(X̄).
tu

Proof of Theorem 4 Consider an arbitrary matrix Z ∈ N (A)\{0} with singular value decom-
position Z = U

[
Diag(σ(Z)) 0

]
V T . We have 0 = A(Z) = AU,V (σ(Z)). Hence, Property (E)

and Fact 3 imply that Z satisfies (22). The desired conclusion now follows from Proposition 5.
tu

By invoking existing results in the literature and applying Theorem 4, exact recovery proper-
ties of the Schatten p–quasi–norm heuristic can be deduced in a rather straightforward manner.
As an illustration, let us establish two recovery conditions based on notions of restricted isometry
for the Schatten p–quasi–norm heuristic. We begin with the following simple observation:
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Proposition 6 Let m,n, r be integers such that r ≤ m ≤ n. Let A : Rm×n → Rl be a given
linear operator.

(a) Suppose there exists a constant αr ∈ (0, 1) such that

(1− αr)‖X‖2
F ≤ ‖A(X)‖2

2 ≤ (1 + αr)‖X‖2
F

for all X ∈ Rm×n with rank(X) ≤ r. Then, for any U ∈ Om and V ∈ On, the matrix
AU,V ∈ Rl×m satisfies

(1− αr)‖x‖2
2 ≤ ‖AU,V (x)‖2

2 ≤ (1 + αr)‖x‖2
2 (23)

for all x ∈ Rm with ‖x‖0 ≤ r.

(b) Let p ∈ (0, 1] be given. Suppose there exists a constant βp,r ∈ (0, 1) such that

(1− βp,r)‖X‖p
F ≤ ‖A(X)‖p

p ≤ (1 + βp,r)‖X‖p
F

for all X ∈ Rm×n with rank(X) ≤ r. Then, for any U ∈ Om and V ∈ On, the matrix
AU,V ∈ Rl×m satisfies

(1− βp,r)‖x‖p
2 ≤ ‖AU,V (x)‖p

p ≤ (1 + βp,r)‖x‖p
2 (24)

for all x ∈ Rm with ‖x‖0 ≤ r.

Proof Let x ∈ Rm be such that ‖x‖0 ≤ r. For any U ∈ Om and V ∈ On, the matrix
X = U

[
Diag(x) 0

]
V T ∈ Rm×n has rank at most r. Moreover, we have ‖X‖F = ‖x‖2,

‖A(X)‖2 = ‖AU,V (x)‖2 and ‖A(X)‖p = ‖AU,V (x)‖p. This completes the proof. tu
Condition (23) (resp. (24)) implies that for any orthogonal matrices U ∈ Om and V ∈ On, the

matrix AU,V ∈ Rl×m satisfies the restricted isometry property (RIP) of order r [9] (resp. restricted
p–isometry property (p–RIP) of order r [11]) with constant at most αr (resp. βp,r). Hence, we
shall say that a linear operator A : Rm×n → Rl satisfies the RIP of order r (resp. p–RIP of
order r) with constant at most αr (resp. βp,r) if it satisfies the hypothesis of Proposition 6(a)
(resp. Proposition 6(b)). Now, the results in [11, 44], together with Theorem 4, imply the
following recovery conditions:

Theorem 5 Let A : Rm×n → Rl be a given linear operator with m ≤ n. Furthermore, let
p ∈ (0, 1) be given.

(a) (cf. [44]; see also [43]) Let k ≥ 1 be an integer such that 2k ≤ m. Suppose that A satisfies
the RIP of order 2k with constant at most α2k, and that p < min{1, 1.0873 × (1 − α2k)}.
Then, every matrix X̄ ∈ Rm×n with rank(X̄) ≤ k and y = A(X̄) ∈ Rl can be exactly
recovered by solving Problem (2) with η = 0.

(b) (cf. [11, Theorem 2.4]) Given an integer k ≥ 1 and a real number b > 1, let a =
db2/(2−p)ke/k. Suppose that A satisfies the p–RIP of order (a + 1)k with constant at
most βp,(a+1)k, and that βp,ak + bβp,(a+1)k < b − 1. Then, every matrix X̄ ∈ Rm×n with
rank(X̄) ≤ k and y = A(X̄) ∈ Rl can be exactly recovered by solving Problem (2) with
η = 0.
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It is worth noting that the recovery conditions in Theorem 5 improve upon those in [24, 45],
which are obtained by analyzing the Schatten p–quasi–norm heuristic directly. This shows that
it could be advantageous to first establish recovery conditions for the `p heuristic (which is often
easier to do) and then translate them into recovery conditions for the Schatten p–quasi–norm
heuristic using Theorem 4.

So far our discussion has focused on the case of noiseless recovery (i.e., η = 0). For the case of
noisy recovery (i.e., η > 0), we do not know whether a result similar to Theorem 4 holds (cf. [33,
Theorem 1]). Nevertheless, the perturbation inequality (3) can still facilitate a direct analysis of
the Schatten p–quasi–norm heuristic in this case. For instance, using arguments similar to those
in [25], we can prove the following robust recovery result:

Theorem 6 Let A : Rm×n → Rl, where m ≤ n, be a given linear operator that satisfies the RIP
of order 2k with constant at most α2k for some integer k ≥ 1. Furthermore, let X̄ ∈ Rm×n be a
matrix with rank(X̄) ≤ k. Set

p̄ = ln
(

1 +
1
2k

)/
ln

(√
1 + α2k

1− α2k
· 2m√

k

)
∈ (0, 1). (25)

Given p ∈ (0, p̄], η > 0, and y = A(X̄) + z ∈ Rl for some z ∈ Rl satisfying ‖z‖2 ≤ η, let
X∗ ∈ Rm×n be an optimal solution to Problem (2). Then,

‖X∗ − X̄‖p <

(
1− 1

2
√

k

)−1 2(2k)1/pη√
k(1− α2k)

.

Proof To ease notation, let us assume that m is a multiple of k. The case where m is not a
multiple of k can be handled in the same manner. Define Z = X∗ − X̄ ∈ Rm×n and let Z =
U

[
Diag(σ(Z)) 0

]
V T be its singular value decomposition. Furthermore, for i = 1, . . . , m/k,

let
Σi = Diag

(
σ(i−1)k+1(Z), . . . , σik(Z)

) ∈ Sk.

Then, we have Z = Z1+· · ·+Zm/k, where Zi = UiΣiV
T
i and Ui (resp. Vi) is the m×k (resp. n×k)

matrix formed by the ((i− 1)k + 1)–st to (ik)–th columns of U (resp. V ).
Since ‖Z‖p

p = ‖Z1‖p
p + · · ·+‖Zm/k‖p

p, in order to prove Theorem 6, it suffices to control ‖Zi‖p
p

for i = 1, . . . , m/k. Towards that end, recall that for any x ∈ Rh and p ∈ (0, 1], we have the
inequality

‖x‖p
p ≤ h1−p/2‖x‖p

2. (26)

Thus, it suffices to consider ‖Zi‖p
F for i = 1, . . . , m/k, which are more amenable to analysis. To

begin, let us derive a bound on ‖Z1‖F using the RIP of A.

Proposition 7 The following holds:

‖Z1‖F ≤ 2η√
1− α2k

+
√

1 + α2k

1− α2k
·

m/k∑

i=3

‖Zi‖F .

To prove Proposition 7, we need the following result:
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Fact 4 (cf. [8, Lemma 3.3]) Let A : Rm×n → Rl be a given linear operator and X,Y ∈ Rm×n

be given matrices. Suppose that rank(X) ≤ rX and rank(Y ) ≤ rY for some integers rX , rY ≥ 1,
and that tr(XT Y ) = 0. Furthermore, suppose that A satisfies the RIP of order rX + rY with
constant at most αrX+rY . Then,

∣∣A(X)TA(Y )
∣∣ ≤ αrX+rY ‖X‖F ‖Y ‖F .

Proof of Proposition 7 We compute

(1− α2k)
(‖Z1‖2

F + ‖Z2‖2
F

)
= (1− α2k)‖Z1 + Z2‖2

F (27)

≤ ‖A(Z1 + Z2)‖2
2 (28)

=

∥∥∥∥∥∥
A(Z)−

m/k∑

i=3

A(Zi)

∥∥∥∥∥∥

2

2

≤

2η +

∥∥∥∥∥∥

m/k∑

i=3

A(Zi)

∥∥∥∥∥∥
2




2

, (29)

where (27) follows from the fact that tr(ZT
1 Z2) = 0; (28) follows from the assumption on A and

the fact that rank(Z1+Z2) ≤ 2k; (29) follows from the fact that ‖A(Z)‖2 ≤ ‖A(X∗)−y‖2+‖z‖2 ≤
2η. In particular, we have

‖Z1‖F ≤ 2η√
1− α2k

+
1√

1− α2k

∥∥∥∥∥∥

m/k∑

i=3

A(Zi)

∥∥∥∥∥∥
2

. (30)

Now, since tr(ZT
i Zj) = 0 for all i, j ∈ {1, . . . , m/k} with i 6= j, we have

∥∥∥∥∥∥

m/k∑

i=3

A(Zi)

∥∥∥∥∥∥

2

2

=
m/k∑

i=3

‖A(Zi)‖2
2 +

∑

3≤i6=j≤m/k

A(Zi)TA(Zj)

≤ (1 + α2k)
m/k∑

i=3

‖Zi‖2
F + α2k

∑

3≤i6=j≤m/k

‖Zi‖F ‖Zj‖F (31)

≤
m/k∑

i=3

‖Zi‖2
F + α2k




m/k∑

i=3

‖Zi‖F




2

≤ (1 + α2k)




m/k∑

i=3

‖Zi‖F




2

,

where (31) follows from the fact that rank(Zi) ≤ k for i = 1, . . . ,m/k, the assumption on A, and
Fact 4. Upon combining the above inequality with (30), the proof is completed. tu
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To proceed, suppose that σ2k+1(Z) = 0. Then, we have Zi = 0 for i = 3, . . . ,m/k. Hence,
Proposition 7 yields ‖Z1‖F ≤ 2η/

√
1− α2k. Using (26), we compute

‖Z1‖p
p ≤ k1−p/2‖Z1‖p

F ≤ k1−p/2

(
2η√

1− α2k

)p

.

This, together with the fact that ‖Z‖p
p = ‖Z1‖p

p + ‖Z2‖p
p ≤ 2‖Z1‖p

p, implies that

‖X∗ − X̄‖p = ‖Z‖p ≤ 21/p‖Z1‖p ≤ 2(2k)1/pη√
k(1− α2k)

. (32)

On the other hand, suppose that σ2k+1(Z) > 0. Then, we have Z3 6= 0. Nevertheless, it can be
shown that

∑m/k
i=3 ‖Zi‖F is not too large.

Proposition 8 The following holds:

m/k∑

i=3

‖Zi‖F <
m‖Z1 + Z2 + Z3‖p√

k(2k + 1)1/p
.

Proof of Proposition 8 On one hand, we have

m/k∑

i=3

‖Zi‖F ≤
(m

k
− 2

)
‖Z3‖F ≤

(m

k
− 2

)√
k σ2k+1(Z) <

m√
k
σ2k+1(Z).

On the other hand, we have

‖Z1 + Z2 + Z3‖p = σ2k+1(Z)

(
3k∑

i=1

(
σi(Z)

σ2k+1(Z)

)p
)1/p

≥ σ2k+1(Z)

(
2k+1∑

i=1

(
σi(Z)

σ2k+1(Z)

)p
)1/p

≥ (2k + 1)1/pσ2k+1(Z).

The desired result then follows by combining the above inequalities. tu
Now, by Propositions 7 and 8 and (26), we have

‖Z1‖p ≤ k1/p

√
k
‖Z1‖F

≤ k1/p

√
k


 2η√

1− α2k
+

√
1 + α2k

1− α2k
·

m/k∑

i=3

‖Zi‖F




<
k1/p

√
k

(
2η√

1− α2k
+

√
1 + α2k

1− α2k
· m‖Z1 + Z2 + Z3‖p√

k(2k + 1)1/p

)
. (33)
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It is easy to verify that for all p ∈ (0, p̄], where p̄ is defined in (25), we have
√

1 + α2k

1− α2k
· m√

k(2k + 1)1/p
≤ 1

2(2k)1/p
. (34)

Moreover, similar to the proof of Proposition 5, we compute

m∑

i=1

σp
i (X̄) ≥

m∑

i=1

σp
i (X

∗) (35)

=
m∑

i=1

σp
i (X̄ + Z)

≥
m∑

i=1

∣∣σp
i (X̄)− σp

i (Z)
∣∣ (36)

≥
k∑

i=1

σp
i (X̄)−

k∑

i=1

σp
i (Z) +

m∑

i=k+1

σp
i (Z), (37)

where (35) follows from the fact that X̄ and X∗ are feasible and optimal for Problem (2),
respectively; (36) follows from the perturbation inequality (3); (37) follows from the fact that
rank(X̄) ≤ k. This yields

‖Z1‖p
p ≥

m/k∑

i=2

‖Zi‖p
p. (38)

Upon substituting (34) and (38) into (33), we obtain

‖Z1‖p <
k1/p

√
k

(
2η√

1− α2k
+
‖Z1 + Z2 + Z3‖p

2(2k)1/p

)

≤ k1/p

√
k


 2η√

1− α2k
+

1
2(2k)1/p


‖Z1‖p

p +
m/k∑

i=2

‖Zi‖p
p




1/p



≤ k1/p

√
k

(
2η√

1− α2k
+
‖Z1‖p

2k1/p

)
,

which is equivalent to

‖Z1‖p <

(
1− 1

2
√

k

)−1 2k1/pη√
k(1− α2k)

. (39)

Since ‖Z‖p
p = ‖Z1‖p

p + · · ·+ ‖Zm/k‖p
p, it follows from (38) and (39) that

‖X∗ − X̄‖p = ‖Z‖p ≤ 21/p‖Z1‖p <

(
1− 1

2
√

k

)−1 2(2k)1/pη√
k(1− α2k)

. (40)

Upon comparing (32) and (40), the desired result follows. tu
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5 Conclusion

In this paper, we established the perturbation inequality (4) concerning concave functions of the
singular values of a matrix. Such an inequality has proven to be fundamental in understanding
the recovery properties of the Schatten p–quasi–norm heuristic. Thus, a natural future direction
is to find other applications of (4) in the study of low–rank matrix recovery. In particular, it
would be interesting to extend Theorem 4 to the noisy recovery setting. Another direction is to
consider random linear operators A : Rm×n → Rl and determine the number of measurements l
needed to guarantee the recovery of a low–rank matrix via the Schatten p–quasi–norm heuristic;
cf. related results for the nuclear norm heuristic in [36, 10]. Lastly, it would be interesting to
prove or disprove the following generalization of (4), which has already attracted some attention
in the linear algebra community:

Conjecture 1 ([3, Conjecture 6]) Let A,B ∈ Rm×n be given matrices. Suppose that f : R+ →
R+ is a concave function satisfying f(0) = 0. Then, for any k ∈ {1, . . . ,min{m,n}},

k∑

i=1

∣∣f(σi(A))− f(σi(B))
∣∣ ≤

k∑

i=1

f(σi(A−B)).

An immediate idea for proving Conjecture 1 would be to adapt our proof in Section 3. As
an intermediate step, one would need to establish a bound similar to that in Theorem 2 on∑k

i=1 f(σi(M + tN)), where M, N ∈ Sn, k ∈ {1, . . . , n}, and t > 0 are arbitrary. However, it
is not clear how to generalize the proof of Theorem 2 to achieve this. Indeed, in the notation
of that proof, if there exists an index j ∈ {0, 1, . . . , l} such that ij ≤ k < ij+1 − 1, then as we
sum the inequality (14) over i = 1, . . . , k, we will encounter the sum of the k − ij + 1 largest
eigenvalues of (Qj)T Ξ(N)Qj , which does not seem to admit a simple analytical form. This should
be contrasted with the sum of all eigenvalues of (Qj)T Ξ(N)Qj , which can be expressed simply as
tr

(
(Qj)T Ξ(N)Qj

)
. Thus, we believe that some new ideas will be needed to settle Conjecture 1

in the affirmative.

Remark: After the submission of our manuscript, Audenaert [2] has resolved Conjecture 1
in the affirmative. His proof employs the so–called Thompson–Freede inequalities [41] for the
eigenvalues of sums of Hermitian matrices and the proof technique is quite different from ours.
We refer the reader to [2] for details.
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