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Abstract

Wasserstein balls, which contain all probability measures within a pre-specified
Wasserstein distance to a reference measure, have recently enjoyed wide popularity in
the distributionally robust optimization and machine learning communities to formu-
late and solve data-driven optimization problems with rigorous statistical guarantees.
In this technical note we prove that the Wasserstein ball is weakly compact under mild
conditions, and we offer necessary and sufficient conditions for the existence of optimal
solutions. We also characterize the sparsity of solutions if the Wasserstein ball is cen-
tred at a discrete reference measure. In comparison with the existing literature, which
has proved similar results under different conditions, our proofs are self-contained and
shorter, yet mathematically rigorous, and our necessary and sufficient conditions for
the existence of optimal solutions are easily verifiable in practice.

1 Introduction

Let (X, d) be a Polish (i.e., a complete and separable) metric space. We assume that
(X, d) is proper, that is, for any R > 0 and x0 ∈ X, the closed ball BR(x0) := {x ∈ X :
d(x, x0) ≤ R} is compact. Examples of proper metric spaces include finite-dimensional
Banach spaces and complete Riemannian manifolds. We denote by P(X) the set of all
Borel probability measures that are supported on X.

For p ∈ [1,∞), the p-th Wasserstein distance between µ1, µ2 ∈ P(X) is defined as

Wp(µ1, µ2) = inf
γ∈Γ(µ1,µ2)

(∫
X×X

dp(x1, x2) dγ(x1, x2)

) 1
p

, (1)

where Γ(µ1, µ2) is the set of all couplings of µ1 and µ2, that is, the set of all probability
measures supported on X×X with marginals µ1 and µ2 (see, e.g., [7, Definition 2.1] or [23,
Definition 6.1]). Intuitively speaking, Wp(µ1, µ2) measures the minimum transportation
cost required to transform the mass of µ1 into the mass of µ2, where the transportation
cost is measured according to the ground metric d.
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The Wasserstein ball of radius r > 0 centred at the reference measure ν ∈ P(X) is

Br(ν) = {µ ∈ P(X) : Wp(µ, ν) ≤ r} . (2)

In this paper, we study the optimization problem

maximize
µ

∫
X
f(x) dµ(x)

subject to µ ∈ Br(ν),

(3)

where f : X → R is assumed to be upper semi-continuous, and where for each µ ∈ Br(ν)
at least one of the integrals

∫
X [f(x)]+ dµ(x) and

∫
X [−f(x)]+ dµ(x) is finite. Optimization

problems of the form (3) arise in distributionally robust optimization, where ambiguity
averse decisions are sought that perform well under misestimations of the unknown true
data generating distribution [5, 11, 15, 16, 19, 26]. Problem (3) also emerges when one
regularizes machine learning problems such as classification problems [10], clustering prob-
lems [13] or generative adversarial networks [2] against overfitting to the training samples.

The remainder of this technical note proceeds as follows. We first prove in Section 2
that the Wasserstein ball Br(ν) is weakly compact under mild conditions. We then leverage
this finding in Section 3 to derive a necessary and sufficient condition for the optimal value
of the optimization problem (3) to be finite. Section 4 shows that essentially the same
condition is also sufficient for the optimal value of (3) to be attained. Section 5 is devoted
to sparse solutions to (3) that place positive probability on finitely many atoms. To
keep this note self-contained, we review results from measure theory and from infinite-
dimensional linear programming in the Appendices A and B, respectively.

2 Weak Compactness of the Wasserstein Ball

We say that a probability measure µ has a finite p-th moment if
∫
X d

p(x, x0) dµ(x) < ∞
for some x0 ∈ X. The triangle inequality for d implies that the integral is finite for some
x0 ∈ X if and only if it is finite for all x0 ∈ X, and thus the reference point x0 does not
matter. In contrast to the literature, which commonly defines the Wasserstein distance
for measures with finite p-th moment only, our definition of the Wasserstein distance also
applies to measures that do not possess a finite p-th moment. We now show, however, that
the Wasserstein ball Br(ν) only contains measures with a finite p-th moment whenever
the reference distribution ν has a finite p-th moment.

Lemma 1. The Wasserstein ball Br(ν) has a uniformly bounded p-th moment, that is,
there exists C > 0 such that

∫
X d

p(x, x0) dµ(x) ≤ C for all µ ∈ Br(ν), whenever ν has a
finite p-th moment.

Proof of Lemma 1. Since the reference measure ν has a finite p-th moment, there is x0 ∈ X
and C0 ∈ R such that

∫
X d

p(x, x0) dν(x) ≤ C0. We claim that
∫
X d

p(x, x0) dµ(x) ≤ C0 + r
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for all measures µ ∈ Br(ν) in the Wasserstein ball. To see this, note that(∫
X
dp(x, x0) dµ(x)

) 1
p

= Wp(µ, δx0) ≤Wp(ν, δx0) +Wp(µ, ν)

=

(∫
X
dp(x, x0) dν(x)

) 1
p

+Wp(µ, ν) ≤ C0 + r,

where δx0 is the Dirac measure at x0, and the first inequality follows from the triangle
inequality of the Wasserstein distance on P(X) [7, Corollary 5.7].

We are now ready to prove the weak compactness of Br(ν).

Theorem 1 (Weak Compactness of Wasserstein Ball). The Wasserstein ball Br(ν) is
weakly compact whenever the reference measure ν has a finite p-th moment.

Proof of Theorem 1. The map µ 7→Wp(µ, ν) is lower semi-continuous with respect to the
weak convergence [7, Corollary 5.3]. Since the Wasserstein ball Br(ν) is a lower level set of
this map, Br(ν) is weakly closed, that is, Br(ν) coincides with its weak closure. To see that
Br(ν) is weakly compact, we show that Br(ν) is tight. We can then employ Prokhorov’s
Theorem (cf. Theorem 5 from Appendix A and the subsequent remark) to conclude that
the closure of the Wasserstein ball Br(ν), which by our previous argument coincides with
Br(ν), is weakly compact.

By Lemma 1, there is C > 0 such that
[∫
X d

p(x, x0) dµ(x)
] 1
p ≤ C for all µ ∈ Br(ν).

To see that the Wasserstein ball Br(ν) is tight, we show that for every ε > 0, we have
µ
(
X \BC/ε(x0)

)
≤ ε for all µ ∈ Br(ν) (cf. Definition 1 from Appendix A). Indeed, we

have that

µ
(
X \BC/ε(x0)

)
= µ({x ∈ X : d(x, x0) > C/ε}) ≤

∫
X d(x, x0) dµ(x)

C/ε

≤
ε ·
[∫
X d

p(x, x0) dµ(x)
] 1
p

C
≤ ε,

where the first inequality is due to Markov’s inequality, the second inequality is due to
Jensen’s inequality, and the third inequality holds by our definition of C. Note that the
set BC/ε(x0) is compact because of the properness of (X, d).

Statements similar to Theorem 1 have been shown in [8, Lemma 3.34] and [20, Propo-
sition 3]. We conclude this section by showing that our assumption of the Polish space
(X, d) being proper is indeed necessary for the statement of Theorem 1.1

Observation 1. If the Wasserstein ball Br(ν) is weakly compact for every r > 0 and
ν ∈ P(X), then (X, d) is proper.

Proof of Observation 1. We show that the closed ball BR(x0) = {x ∈ X : d(x, x0) ≤ R}
is compact for any R > 0 and x0 ∈ X. To this end, fix any R > 0 and x0 ∈ X, and

1We are grateful to Lorenzo Dello Schiavo, who communicated this result to us.
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let F : X → P(X) be defined as F (x) = δx, where δx is again the Dirac measure at x.
One readily verifies that F is weakly continuous. Together with the closedness of BR(x0),
this implies that the image F (BR(x0)) is weakly closed. Since F (BR(x0)) ⊆ BR(δx0) and
BR(δx0) is weakly compact by assumption, we conclude that F (BR(x0)) is weakly compact
as well. Example 8.6.6 in [6] then implies that Br(x0) is compact.

3 Finiteness of the Optimal Value of Problem (3)

We provide a necessary and sufficient condition for the finiteness of the optimal value of
the optimization problem (3).

Theorem 2. Assume that ν has a finite p-th moment. Then the optimal value of prob-
lem (3) is finite if and only if there exist x0 ∈ X and c > 0 such that f(x) ≤ c[1+dp(x, x0)]
for all x ∈ X.

Proof. Recall that the Wasserstein radius r is strictly positive. By [23, Theorem 6.18],
there thus exists a discrete probability measure ν̂ =

∑N
i=1 αi·δyi , α ∈ RN+ with

∑N
i=1 αi = 1,

that is supported on 2 ≤ N <∞ atoms y1, . . . , yN ∈ X and that satisfies Wp(ν̂, ν) ≤ r/2,
that is, ν̂ resides in the vicinity of ν. We fix this measure for the remainder of the proof.

Note also that f is real-valued and the integral of f under ν̂ reduces to a finite sum
of real values. Since ν̂ is feasible in (3), the optimal value of (3) thus cannot be −∞. We
next prove that the boundedness of (3) implies the stated growth condition on f .

Assume for the sake of contradiction that problem (3) is bounded, but for all x0 ∈ X
and c > 0 there is x ∈ X for which f(x) > c[1 + dp(x, x0)], in violation of the statement
of the theorem. We can then construct a sequence {yk}k ⊆ X such that

lim
k→∞

f(yk)

1 + dp(yk, y1)
= +∞.

Note that in this expression, we have chosen x0 = y1, where y1 is the first atom of ν̂. In the
following, we use the sequence {yk}k to construct a sequence of probability measures {µk}k
from within the Wasserstein ball Br(ν) for which the integrals

∫
X f(x) dµk(x) diverge, in

contradiction to the assumption that problem (3) is bounded.
Using the sequence {yk}k, we construct the sequence of probability measures

µk = εk · δyk + (α1 − εk) · δy1 +

N∑
i=2

αi · δyi with εk =
min{α1, r

p/2p}
1 + dp(yk, y1)

.

Note that each µk is indeed a probability measure since εk ∈ [0, α1] and εk+(α1−εk)+α2+
. . .+αN = α1 + . . .+αN = 1. To see that µk ∈ Br(ν) for all k, consider the transportation
plan γk ∈ P(X ×X) given by

γk = εk · δ(y1,yk) + (α1 − εk) · δ(y1,y1) +

N∑
i=2

αi · δ(yi,yi).
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One readily verifies that γk ∈ Γ(ν̂, µk), as well as

Wp(ν, µ
k) ≤ Wp(ν, ν̂) +W (µk, ν̂) ≤ r

2
+

[∫
X×X

dp(x1, x2) dγk(x1, x2)

] 1
p

=
r

2
+

[
εk · dp(y1, y

k) + (α1 − εk) · dp(y1, y1) +

N∑
i=2

αi · dp(yi, yi)

] 1
p

≤ r.

Here, the first inequality follows from the triangle inequality of the Wasserstein distance
on P(X) [7, Corollary 5.7], the second inequality holds by construction of ν̂ and because
γk ∈ Γ(ν̂, µk), and the last inequality follows from the fact that εk · dp(y1, y

k) ≤ rp/2p.
We thus conclude that {µk}k ⊆ Br(ν) as desired. To see that the integrals

∫
X f(x) dµk(x)

diverge, we note that

lim
k→∞

∫
X
f(x) dµk(x) = lim

k→∞

[
min{α1, r

p/2p}
1 + dp(yk, y1)

· f(yk) + (α1 − εk) · f(y1) +
N∑
i=2

αi · f(yi)

]
.

The second expression diverges since f(yk)/[1 + dp(yk, y1)] −→ ∞ while min{α1, r
p/2p}

is constant in k. We have thus proved that the boundedness of problem (3) implies the
stated growth condition on f .

To show that the stated growth condition on f also implies the boundedness of prob-
lem (3), fix any µ ∈ Br(ν) and note that∫

X
f(x) dµ(x) ≤

∫
X
c [1 + dp(x, x0)] dµ(x)

= c+ c ·W p
p (µ, δx0)

≤ c+ c [Wp(µ, ν) +Wp(ν, δx0)]p ,

where the inequalities are due to the assumed growth condition on f and the triangle
inequality of Wp, respectively. Since Wp(µ, ν) ≤ r as µ ∈ Br(ν), we can thus uniformly
bound the objective value of every measure µ ∈ Br(ν) in problem (3).

4 Existence of Optimal Solutions

We now study the existence of optimal solutions to the optimization problem (3).

Theorem 3. Assume that ν has a finite p-th moment. If there exist x0 ∈ X, c > 0 and
p′ ∈ (0, p) such that f(x) ≤ c[1 + dp

′
(x, x0)] for all x ∈ X, then the optimal value of (3)

is attained.

Proof. By Theorem 1 and Weierstrass’ theorem, it suffices to show that the map µ 7→∫
X f(x) dµ(x) is weakly upper semi-continuous on Br(ν). To this end, let {µk}k ⊆ Br(ν) be

a sequence converging weakly to µ∞. In order to show that lim supk−→∞
∫
X f(x) dµk(x) ≤∫

X f(x) dµ∞(x), we may may assume w.l.o.g. that
∫
X f(x) dµk(x) > −∞ for all k. Since

the assumptions of Theorem 2 are satisfied, the optimal value of problem (3) is finite,
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and hence
∫
X f(x) dµk(x) < ∞ for all k as well. Since Br(ν) is weakly closed, we have

µ∞ ∈ Br(ν). We need to show that for any ε > 0 there is k(ε) such that∫
X
f(x) dµk(x)−

∫
X
f(x) dµ∞(x) ≤ ε ∀k ≥ k(ε).

Our proof relies on the construction of an auxiliary function fR : X → R whose
integrals under the probability measures µ ∈ Br(ν) are close to those of f but that is at
the same time bounded from above by a constant involving R. To this end, fix R > 0 and
set fR(x) = min{f(x), c(Rp

′
+ 1)}. We then have

|f(x)− fR(x)| ≤

{
c · dp′(x, x0) if d(x, x0) ≥ R,
0 otherwise

∀x ∈ X. (4)

To see this, note first that fR(x) ≤ f(x) and thus |f(x)− fR(x)| = f(x) − fR(x). Fix
x ∈ X and assume first that d(x, x0) ≥ R. If f(x) ≤ c(Rp

′
+ 1), then fR(x) = f(x) and

thus |f(x)− fR(x)| = 0. If f(x) > c(Rp
′
+ 1), on the other hand, then

f(x)− fR(x) = f(x)− c(Rp′ + 1) ≤ c(dp
′
(x, x0) + 1)− c(Rp′ + 1) ≤ c · dp′(x, x0),

where first inequality follows from the assumption made in the statement of this theorem.
Assume now that d(x, x0) < R. In that case, the same assumption implies that f(x) ≤
c(dp

′
(x, x0)+1) < c(Rp

′
+1) and hence f(x) = fR(x). We thus conclude that the bound (4)

indeed holds. The bound implies that for all µ ∈ Br(ν), we have that∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
fR(x) dµ(x)

∣∣∣∣ ≤ ∫
X
|f(x)− fR(x)| dµ(x)

≤ c ·
∫
d( · ,x0)≥R

dp
′
(x, x0) dµ(x) ≤ c · C

R(p−p′) , (5)

where the first and second inequality follow from the triangle inequality and equation (4),
respectively. The third inequality holds because

dp
′
(x, x0) =

dp(x, x0)

dp–p′(x, x0)
≤ dp(x, x0)

R(p–p′)
∀x ∈ X : d(x, x0) ≥ R,

and since Lemma 1 implies that there is C > 0 such that∫
d( · ,x0)≥R

dp(x, x0) dµ(x) ≤
∫
X
dp(x, x0) dµ(x) ≤ C ∀µ ∈ Br(ν).

Using the auxiliary function fR, we can now prove the weak upper semicontinuity of
the map µ 7→

∫
X f(x) dµ(x) over Br(ν). Indeed, for every ε > 0 there is k(ε) such that for

all k ≥ k(ε), we have∫
X
f(x) dµk(x)−

∫
X
f(x) dµ∞(x) ≤

∫
X
fR(x) dµk(x)−

∫
X
fR(x) dµ∞(x)

+

∣∣∣∣∫
X
f(x) dµk(x)−

∫
X
fR(x) dµk(x)

∣∣∣∣
+

∣∣∣∣∫
X
f(x) dµ∞(x)−

∫
X
fR(x) dµ∞(x)

∣∣∣∣ ≤ ε.
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Here, the first inequality follows from the triangle inequality. As for the second inequal-
ity, we can choose R sufficiently large such that c · C/[R(p−p′)] ≤ ε/3, which implies by
equation (5) that the two absolute values are both bounded above by ε/3. Note further
that fR is upper semicontinuous and bounded from above by construction. Lemma 3 in
Appendix A thus implies that the first difference of integrals can be made smaller than
ε/3 by selecting k(ε) sufficiently large. We therefore conclude that µ 7→

∫
X f(x) dµ(x) is

weakly upper semicontinuous over Br(ν), as desired.

Note that the only difference between the conditions of Theorems 2 and 3 is that in
the latter case, we require the growth condition for f to be satisfied for some p′ < p.
One can readily construct instances of problem (3) where f(x) grows asymptotically as
dpp(x, x0) for some x0 ∈ X but where the optimal value is still attained. On the other
hand, [14, Example 4] presents an instance of (3) that satisfies the condition of Theorem 2
and for which there exists no single measure that attains the (finite) optimal value. In
this example, X is necessarily unbounded. Indeed, if X is bounded, then the Wasserstein
distance Wp metrizes the weak topology (see, e.g., [9, page 330], [12, page 11] and [23,
Theorem 6.9]) and therefore an optimal solution to problem (3) exists even under the
weaker condition of Theorem 2.

A necessary and sufficient condition for the existence of optimal solutions to (3) is
derived in [11]. Since that condition requires the knowledge of an optimal dual solution
to problem (3), however, it is difficult to verify in practice. In contrast, our result relies
on a sufficient condition that is easily verifiable.

5 Existence of Optimal Discrete Solutions

We now show that we can restrict problem (3) to probability measures supported on N+1
atoms if the reference measure ν of the Wasserstein ball Br(ν) is a discrete probability
measure supported on N atoms. This is frequently the case in applications, where the
reference measure ν is chosen as the empirical measure on finitely many training samples.

Theorem 4 (Existence of Discrete Optimal Solutions). Assume that ν is supported on
N atoms and that the conditions of Theorem 3 hold. Then problem (3) is optimized by a
probability measure that is supported on at most N + 1 atoms.

Proof. Our proof proceeds in several steps. By replacing the Wasserstein distance with
its definition, we first transform the optimization problem (3) into an infinite-dimensional
linear program over the cone of nonnegative measures that acommodates N equality con-
straints and 1 inequality constraint. We next assume that the inequality constraint can
be strengthened to an equality without affecting the optimal value of the problem. In
this case, the problem becomes an infinite-dimensional linear program in standard form,
and the desired conclusion follows from the sparsity of optimal basic feasible solutions to
such problems (cf. Appendix B). If the inequality constraint cannot be strengthened to
an equality without affecting the optimal value of the problem, finally, we show that the
optimization problem admits an optimal solution that is a Dirac measure.
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In view of the first step, note that the definition of the Wasserstein distance (1) and
the Wasserstein ball (2) imply that the optimization problem (3) can be formulated as

maximize
µ

∫
X
f(x) dµ(x)

subject to µ ∈ P(X)

inf
γ∈Γ(µ,ν)

∫
X×X

dp(x1, x2) dγ(x1, x2) ≤ rp.

Following [15], we can eliminate the embedded minimization over γ in the problem above
and obtain the equivalent single-level problem

maximize
µ, γ

∫
X
f(x) dµ(x)

subject to µ ∈ P(X), γ ∈ P(X ×X)
P1γ = µ, P2γ = ν∫
X×X

dp(x1, x2) dγ(x1, x2) ≤ rp,

(6)

where P1γ and P2γ refer to the first and second marginal probability measure of γ, re-
spectively, that is, (P1γ)(S) = γ(S×X) and (P2γ)(S) = γ(X ×S) for any Borel subset S
of X. Since µ = P1γ, a change of variables allows us to rewrite the objective function as∫

X×X
f(x1) dγ(x1, x2).

We can assume that ν satisfies ν =
∑N

i=1 αi · δyi with α ∈ RN+ and
∑N

i=1 αi = 1 as well
as y1, . . . , yN ∈ X. We can then re-express the constraint P2γ = ν in (6) through∫

X×X
1X×{yi}(x1, x2) dγ(x1, x2) = αi ∀i = 1, . . . , N,

where the indicator function satisfies 1S(x1, x2) = 1 if (x1, x2) ∈ S ⊆ X × X and
1S(x1, x2) = 0 otherwise. If we additionally define Y = {y1, . . . , yN} and make the nor-
malization of γ explicit, we obtain the following equivalent reformulation of problem (6):

maximize
γ

∫
X×Y

f(x1) dγ(x1, x2)

subject to γ ∈M+(X × Y )∫
X×Y

dγ(x1, x2) = 1∫
X×Y

1X×{yi}(x1, x2) dγ(x1, x2) = αi ∀i = 1, . . . , N∫
X×Y

dp(x1, x2) dγ(x1, x2) ≤ rp,

(7)
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Here,M+(X×Y ) is the set of all non-negative finite Borel measures supported on X×Y ,
and the first integral constraint ensures that γ is indeed a probability measure residing in
P(X × Y ). Note that any one of the N + 1 equality constraints in problem (7) is implied
by the remaining N constraints. Hence, we can drop the normalization constraint. This
seemingly redundant step ensures that we can get a discrete optimal solution with N + 1
support points later. Combining the aforementioned reductions, problem (7) becomes

maximize
γ

∫
X×Y

f(x1) dγ(x1, x2)

subject to γ ∈M+(X × Y )∫
X×Y

1X×{yi}(x1, x2) dγ(x1, x2) = αi ∀i = 1, . . . , N∫
X×Y

dp(x1, x2) dγ(x1, x2) ≤ rp.

(8)

Below, we distinguish between the two cases where the optimal value of problem (8)
changes (or remains unchanged) if we strengthen the last integral constraint to an equality.

We next assume that we can strengthen the last integral constraint to an equality
without affecting the optimal value of the problem. In that case, problem (8) resembles
a linear program in standard form with N + 1 equality constraints and infinitely many
nonnegative decision variables. We should thus expect that its optimal value is attained
by a basic feasible solution, that is, a solution for which at most N + 1 variables are
strictly positive and all others vanish. In our context, such a basic feasible solution would
correspond to a discrete measure γ that is supported on at most N + 1 atoms of X × Y .
To formalize this intuition, we apply Proposition 1 from Appendix B to conclude that our
variant of problem (8) is equivalent to

maximize
γ

∫
X×Y

f(x1) dγ(x1, x2)

subject to γ ∈ DN+1(X × Y )∫
X×Y

1X×{yi}(x1, x2) dγ(x1, x2) = αi ∀i = 1, . . . , N∫
X×Y

dp(x1, x2) dγ(x1, x2) = rp,

(9)

where we have replaced the set of all non-negative finite Borel measures M+(X × Y )
on X × Y with the subset of non-negative discrete measures DN+1(X × Y ) that are
supported on at most N + 1 points in X × Y . Indeed, one readily verifies that our
variant of problem (8) is an instance of problem (11) if we set Z = X × Y , ψ = f ◦
π1, where π1(x1, x2) = x1 for (x1, x2) ∈ X × X, m = N + 1, φi = 1X×{yi} and vi =
αi, i = 1, . . . , N , as well as φN+1 = dp and vN+1 = rp. Moreover, the conditions of
Proposition 1 are satisfied. Indeed, we assumed in Section 1 that at least one of the
integrals

∫
X [f(x)]+ dµ(x) and

∫
X [−f(x)]+ dµ(x) is finite for each µ ∈ Br(ν). Likewise,

the requirement that
∫
Z |φi|(z) dγ(z) <∞ for all i = 1, . . . ,m is guaranteed by Lemma 1

and the fact that γ is a probability measure.
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It is not a priori clear whether the feasible region of problem (9) is weakly compact,
and thus we cannot ascertain that the optimal value of (9) is attained. If we replace the
last equality in (9) with an inequality, however, we obtain the relaxation

maximize
γ

∫
X×Y

f(x1) dγ(x1, x2)

subject to γ ∈ DN+1(X × Y )∫
X×Y

1X×{yi}(x1, x2) dγ(x1, x2) = αi ∀i = 1, . . . , N∫
X×Y

dp(x1, x2) dγ(x1, x2) ≤ rp

(10)

whose optimal value is attained by Lemma 2 below. Note that the optimal value of (10) is
sandwiched by the optimal values of (8) and (9). Since the optimal values of (8) and (9)
coincide, we conclude that problem (10) must have the same optimal value as well.

Let γ? be an optimal solution to problem (10). Since γ? ∈ DN+1(X × Y ), there are
(xi1, x

i
2) ∈ X × Y , i = 1, . . . , N + 1, as well as β ∈ RN+1

+ such that γ? =
∑N+1

i=1 βi · δ(xi1,x
i
2)

and
∑N+1

i=1 βi = 1. By construction, µ? = P1γ
? satisfies µ? ∈ DN+1(X),

∫
X f(x) dµ?(x) =

sup (10) = sup (3), as well as

Wp(µ
?, ν) = inf

γ∈Γ(µ?,ν)

(∫
X×X

dp(x1, x2) dγ(x1, x2)

) 1
p

≤
(∫

X×X
dp(x1, x2) dγ?(x1, x2)

) 1
p

≤ r,

which implies that µ? ∈ Br(ν). We thus conclude that µ? is an N + 1-point distribution
in Br(ν) that optimizes problem (3), as desired.

Assume now that strengthening the last integral constraint of problem (8) to an equal-
ity changes the optimal value of (8). We claim that in this case, any optimal solution
µ? to problem (3) satisfies the strict inequality Wp(µ

?, ν) < r. Indeed, assume to the
contrary that there is an optimal solution µ? to (3) that satisfies Wp(µ

?, ν) = r. By [23,
Theorem 4.1], the distance Wp(µ

?, ν) is attained by some minimizer γ? ∈ P(X×X) of (1),
and one readily verifies that γ? would constitute a feasible solution to problem (8) that
satisfies the last integral constraint as equality and that attains the optimal value of (8).
This, however, contradicts our assumption that the optimal value of (8) changes if we
strengthen the last integral constraint to an equality.

We now claim that the Wasserstein ball Br(ν) must contain a Dirac measure that
places all probability mass on a global maximizer of f . Assume to the contrary that Br(ν)
does not contain such a Dirac measure. In that case, we must have arg maxx∈X f(x) 6= ∅,
and any optimal solution µ? to (3) must be supported on arg maxx∈X f(x). Indeed, if that
was not the case, there would be x̂ ∈ X with f(x̂) >

∫
X f(x) dµ?. Consider now all convex

combinations µ(λ) = λ·δx̂+(1−λ)·µ?, λ ∈ [0, 1]. Since the map λ 7→W p
p (µ(λ), ν) is finite,

convex and lower semi-continuous on λ ∈ [0, 1], see [7, Corollary 5.3], it is continuous on
the entire interval. For sufficiently small λ, µ(λ) is therefore feasible in (3) and attains
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a larger objective value than µ?, thus violating the optimality of µ?. Consider now any
Dirac distribution δx′ supported on x′ ∈ arg maxx∈X f(x). This Dirac distribution must
be contained in Br(ν), for otherwise we could again form convex combinations µ′ between
µ? and δx′ that are optimal in (3) and that satisfy Wp(µ

′, ν) = r, in contradiction to our
earlier finding. We thus conclude that the Wasserstein ball Br(ν) contains a Dirac measure
that places all probability mass on a global maximizer of f , and this Dirac measure clearly
constitutes an optimal discrete solution to (3).

The following technical lemma is used in the proof of Theorem 4.

Lemma 2. Assume that the assumptions of Theorem 4 hold. If the optimal value of
problem (10) is finite, then it is attained.

Proof. We first show that the feasible region of problem (10) is weakly closed. Towards
that end, note that the feasible region can be written as the intersection S1 ∩S2 ∩S3 with

S1 = {γ ∈ P(X × Y ) : P2γ = ν} = P−1
2 {ν} ,

S2 =

{
γ ∈ P(X × Y ) :

∫
X×X

dp(x, y) dγ(x, y) ≤ rp
}

and

S3 = DN+1(X × Y ) ∩ P(X × Y ),

where P2 sends a probability measure on X × Y to its second marginal distribution.
We claim that these three sets are all weakly closed. Indeed, the weak closedness of
S1 = P−1

2 {ν} follows from the facts that P2 is continuous on P(X × Y ) with respect to
the weak topology by [1, Theorem 15.14] and that any singleton in P(X × Y ) is weakly
closed. The weak closedness of S2 follows from the fact that it is a lower level set of the
weakly lower semi-continuous map γ 7→

∫
X×X d

p(x, y) dγ(x, y), see [18, Lemma 5.3]. As for

the set S3, let ∆N+1 ⊆ RN+1 be the probability simplex and P : ∆N+1×(X×Y )N+1 → S3

be the map defined by

P (β, z1, . . . , zN+1) =

N+1∑
i=1

βiδzi ,

which is weakly continuous. Noting that S3 = P (∆N+1× (X×Y )N+1), we have S3 is also
weakly closed. Hence, the feasible region of problem (10) is also weakly closed.

Next, we claim that the feasible region is tight. Indeed, given any ε > 0, by the
tightness of the Wasserstein ball (see the proof of Theorem 1), there exists a compact set
K ⊆ X such that µ(X \K) ≤ ε for all µ ∈ Br(ν). Also, for any γ ∈ S1 ∩ S2, we have that
P1γ ∈ Br(ν). Therefore,

γ ((X × Y ) \ (K × Y )) = γ ((X \K)× Y ) = (P1γ)(X \K) ≤ ε,

which proves the claim. By the Prokhorov’s Theorem (cf. Theorem 5 from Appendix A
and the subsequent remark) and the two claims just proved, the feasible region is weakly
compact.

Finally, from the proof of Theorem 3, it can be easily proven that the objective function
of problem (10)

γ 7→
∫
X×Y

f(x1) dγ(x1, x2)

11



is weakly upper semi-continuous on the feasible region. We thus conclude that an optimal
solution exists. This completes the proof.

One may wonder whether the result of Theorem 4 can be strengthened further to the
existence of optimal solutions to (3) that are supported on fewer than N+1 atoms. While
this is possible for specific instances (for example, if f(x) is concave), one can construct
instances of problem (3) where the optimal value is only attained by measures supported
on at least N + 1 atoms [14, Example 5].

The sparsity of optimal solutions to problem (3) has been investigated by several au-
thors. To our best knowledge, the first result in this direction is [24], which employs
the Kantorovich-Rubinstein and the Richter-Rogosinski theorems to prove that if (3) is
solvable, then it is solved by a measure that is supported on at most N + 3 atoms. Sub-
sequently, [18] showed that, if problem (3) is solvable, there are indeed optimal solutions
that are only supported on at most N + 2 atoms. The sharp characterization of optimal
measures supported on at most N + 1 atoms has been first derived in [11]. In contrast to
our result, the authors do not employ the Richter-Rogosinski theorem or results remiscent
of those in Appendix B. Instead, they rely on the first-order optimality conditions of the
problem dual to (3). While this allows them to provide further insights into the structure
of optimal solutions, their proof is substantially more difficult to verify than ours. Finally,
we remark that a special case of this (N + 1)-atom result has also been proved via yet
another argument in [17].
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Appendix A Auxiliary Measure-Theoretic Results

We review some well-known facts from measure theory that we use to prove our results. We
first recall a connection between the notions of tightness and weak sequential compactness
of collections of probability measures.

Definition 1. A collection S ⊆ P(X) of probability measures is tight if for any ε > 0,
there exists a compact subset B ⊆ X such that µ(X \B) ≤ ε for all µ ∈ S.

Definition 2. A sequence {µk}k ⊆ P(X) of probability measures converges weakly to
µ∞ ∈ P(X) if for any bounded and continuous function g on X, we have

lim
k−→∞

∫
X
g(x) dµk =

∫
X
g(x) dµ∞.

Definition 3. A collection S ⊆ P(X) of probability measures is weakly sequentially com-
pact if every sequence in S has a subsequence that converges weakly to an element of S.

The concepts of tightness and weak sequential compactness are connected by Prokho-
rov’s Theorem, see for example [3, Theorem 5.1].

Theorem 5 (Prokhorov’s Theorem). A collection S ⊆ P(X) of probability measures is
tight if and only if the closure of S is weakly sequentially compact in P(X).

Note that the space P(X) is metrizable, sequential compactness and compactness of
subsets of P(X) are equivalent to each other.

The following lemma, which is excerpted from the Portmanteau Theorem (see for
example [4, Problem 29.1(c)]), provides a useful characterization of weak convergence.

Lemma 3. A sequence {µk}k ⊆ P(X) of probability measures converges weakly to µ∞ ∈
P(X) if and only if for any upper bounded and upper semi-continuous function g on X,
we have

lim sup
k−→∞

∫
X
g(x) dµk(x) ≤

∫
X
g(x) dµ∞(x).
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Appendix B Basic Feasible Solutions in Infinite-Dimensional
Linear Programming

It is well-known that if a finite-dimensional linear program with m equality constraints has
an optimal solution, then there must be an optimal basic feasible solution with at most m
non-zero entries. An infinite-dimensional analogue of this fact is proved in [21, Corollary 5
and Proposition 6(v)]. To state this result, let Z be a topological space, letM+(Z) be the
set of non-negative finite Borel measures supported on Z, and let ψ, φ1, . . . , φm : Z → R
be Borel functions as well as v ∈ Rm. Consider now the optimization problem

maximize
γ

∫
Z
ψ(z) dγ(z)

subject to γ ∈M+(Z)∫
Z
φi(z) dγ(z) = vi ∀i = 1, . . . ,m,

(11)

and denote by F the feasible region of (11) and by ext(F) the set of extreme points of F .

Proposition 1. Suppose that for all γ ∈ F , at least one of the integrals
∫
X [ψ(z)]+ dγ(z)

and
∫
X [−ψ(z)]+ dγ(z) is finite and that

∫
Z |φi|(z) dγ(z) <∞ for all i = 1, . . . ,m. If

sup

{∫
Z
ψ(z) dγ(z) : γ ∈ F

}
= sup

{∫
Z
ψ(z) dγ(z) : γ ∈ ext(F)

}
, (12)

then it holds that

sup

{∫
Z
ψ(z) dγ(z) : γ ∈ F

}
= sup

{∫
Z
ψ(z) dγ : γ ∈ F ∩ Dm(Z)

}
,

where Dm(Z) is the set of non-negative discrete measures supported on at most m points
in Z. Furthermore, if F ⊆ P(Z) and Z is Hausdorff, then the condition (12) is satisfied.

We note that the conclusion of Proposition 1 cannot readily be drawn from the Richter-
Rogosinski theorem [22, Theorem 7.32]. Indeed, in our context the Richter-Rogosinski
theorem would only ensure the existence of a non-negative discrete measure γ? that is
supported on at most m + 1 (instead of m) points since γ? would have to satisfy m + 1
moment conditions: the m moment constraints of problem (11) as well as the additional
constraint that γ? attains the optimal objective value of problem (11).

Appendix C An Alternative Proof of Lemma 2

In this appendix, we provide an alternative proof of Lemma 2, which is longer but arguably
more elementary.

Proof. Since problem (10) has a finite optimal value, there is a sequence of feasible solu-
tions {γk}k to (10) that attains the optimal value of (10) asymptotically. We prove the
lemma by constructing from {γk}k a solution γ? that is feasible in (10) and that attains
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the optimal value of (10). To simplify the exposition, we assume in the representation of
the reference measure ν that αi > 0 for all i and that yi 6= yj for all i 6= j; both conditions
can always be satisfied by reducing the number of atoms N if necessary.

By going over to a subsequence if necessary, we may assume w.l.o.g. that every measure
γk of the sequence {γk}k can be represented as

γk =

N−1∑
i=1

αi · δ(xki ,yi)
+ (αN − βk) · δ(xkN ,yN ) + βk · δ(xkN+1,yN )

for some xk1, . . . , x
k
N+1 ∈ X and βk ∈ [0, αN ]. Indeed, every γk is supported on N + 1

atoms from X × Y since γk ∈ DN+1(X × Y ). Moreover, the first integral constraint
in (10) implies that γk(X × {yi}) = αi for all i = 1, . . . , N . Since the reference measure
ν has N atoms but γk is supported on N + 1 atoms, there is an atom yi of the reference
measure ν whose probability mass αi is split across two atoms in γk (with one of them
possibly having zero probability mass). While a different atom yi may be split for different
γk, we can again go over to a subsequence if necessary to ensure that the same atom yi is
split in all measures of {γk}k. Moreover, we can assume w.l.o.g. that the split atom is yN ,
which gives rise to the two atoms (xkN , yN ) and (xkN+1, yN ) for every γk; this can always be
ensured by reordering the atoms of ν if necessary. In the remainder of this proof we argue
that a subsequence of {γk}k converges weakly to a measure γ? that is feasible in (10) and
that achieves the optimal value of (10).

We first show that {γk}k has a subsequence for which {xki }k converges to some x?i ∈ X
for every i = 1, . . . , N−1. Indeed, assume to the contrary that {xk1}k does not have a con-
vergent subsequence. Since the space (X, d) is assumed to be proper, this is only possible if
{xk1}k diverges, that is, if d(xk1, y1) −→∞. In that case, the associated transportation cost
α1 · d(xk1, y1) would also diverge since α1 > 0. Thus, the last constraint in problem (10)
would be violated, which contradicts the assumed feasibility of each member of the se-
quence {γk}k. Iteratively applying the same argument to {xki }k, i = 2, . . . , N − 1, allows
us to replace {γk}k with a subsequence such that {xki }k −→ x?i for all i = 1, . . . , N − 1.

Consider now the sequences {xkN}k and {xkN+1}k. By going over to a subsequence if
necessary, we may assume w.l.o.g. that {βk}k converges to β? ∈ [0, αN ] since the interval
[0, αN ] is compact. If β? ∈ (0, αN ), then the argument from the previous paragraph applies
equally to {xkN}k and {xkN+1}k, that is, by iteratively going over to subsequences we may

assume that {xki }k −→ x?i also for i = N,N + 1. In this case, {γk}k converges weakly to

γ? =
N−1∑
i=1

αi · δ(x?i ,yi)
+ (αN − β?) · δ(x?N ,yN ) + β? · δ(x?N+1,yN ).

The measure γ? resides in DN+1, and it satisfies the first integral constraint in (10) by
construction. It satisfies the second integral constraint since the metric d is continuous in
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the topology that it generates. Moreover, γ? attains the optimal value of (10) since∫
X×Y

f(x1) dγ?(x1, x2) =
N−1∑
i=1

αi · f(x?i ) + (αN − β?) · f(x?N ) + β? · f(x?N+1)

≥ lim sup
k−→∞

[
N−1∑
i=1

αi · f(xki ) + (αN − βk) · f(xkN ) + βk · f(xkN+1)

]

= lim sup
k−→∞

[∫
X×Y

f(x1) dγk(x1, x2)

]
= sup (10). (13)

Here, the first and the penultimate identity hold by the definitions of γ? and γk, respec-
tively, and the last identity follows from the fact that {γk}k attains the optimal value of
problem (10) asymptotically. The inequality in (13) follows from the upper semi-continuity
of f and the fact that xki −→ x?i , i = 1, . . . , N + 1, as well as βk −→ β?.

Assume now that β? = 0; the case where β? = αN is symmetric. A similar argument as
before implies that by going over to a subsequence if necessary, we may assume w.l.o.g. that
xkN −→ x?N . In this case, the sequence {γk}k converges weakly to

γ? =
N∑
i=1

αi · δ(x?i ,yi)
,

even though {xkN+1}k may not converge. Again, γ? ∈ DN+1, and γ? satisfies the first
integral constraint in problem (10). As for the second integral constraint in (10), we have∫

X×Y
dp(x1, x2) dγ?(x1, x2) =

N∑
i=1

αi · dp(x?i , yi)

≤ lim sup
k−→∞

[
N−1∑
i=1

αi · dp(xki , yi) + (αN − βk) · dp(xkN , yN ) + βk · dp(xkN+1, yN )

]

= lim sup
k−→∞

[∫
X×Y

dp(x1, x2) dγk(x1, x2)

]
≤ rp.

Here, the first identity holds by definition of γ?. The inequality follows from the fact that
the sum of

∑N−1
i=1 αi · dp(xki , yi) and (αN − βk) · dp(xkN , yN ) converges to the expression∑N

i=1 αi · dp(x?i , yi) on the left-hand side and the last expression βk · dp(xkN+1, yN ) is non-

negative by construction. The last line, finally, follows from the definition of γk and the
feasibility of γk in (10). We thus conclude that γ? is feasible in problem (10).
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To see that γ? attains the optimal value of problem (10), we observe that∫
X×Y

f(x1) dγ?(x1, x2) =
N∑
i=1

αi · f(x?i )

≥ lim sup
k−→∞

[
N−1∑
i=1

αi · f(xki ) + (αN − βk) · f(xkN )

]

≥ lim sup
k−→∞

[
N−1∑
i=1

αi · f(xki ) + (αN − βk) · f(xkN ) + βk · f(xkN+1)

]

= lim sup
k−→∞

[∫
X×Y

f(x1) dγk(x1, x2)

]
= sup (10). (14)

Here, the identities can be justified as in (13). The first inequality holds since f is upper
semi-continuous, xki −→ x?i , i = 1, . . . , N , and βk −→ 0. We claim that

lim sup
k−→∞

[
βk · f(xkN+1)

]
≤ 0, (15)

which proves the second inequality in (14). To show this, fix an arbitrary ε > 0 and choose
R > 0 large enough such that

rp

Rp
· c
[
1 + (R+ d(yN , x0))p

′
]
≤ ε, (16)

which exists since p′ < p. Note that (16) is monotone in R, that is, if it is satisfied for
some R > 0, it is also satisfied for all R′ > R. Now select k(ε) ∈ N large enough such that
βk ·supx∈X{f(x) : d(x, yN ) ≤ R} ≤ ε for all k ≥ k(ε). Such a k(ε) exists because f is upper
semi-continuous and hence its supremum over any compact set is finite. We claim that

βk · f(xkN+1) ≤ ε ∀k ≥ k(ε).

Fix any k ≥ k(ε). If d(xkN+1, yN ) ≤ R, then the claim follows immediately from our choice

of k(ε). If d(xkN+1, yN ) > R, on the other hand, then the claim holds since

βk · f(xkN+1) ≤ rp

dp(xkN+1, yN )
· c
[
1 + dp

′
(xkN+1, x0)

]
≤ rp

dp(xkN+1, yN )
· c
[
1 +

(
d(xkN+1, yN ) + d(yN , x0)

)p′]
≤ rp

Rp
· c
[
1 + (R+ d(yN , x0))p

′
]
≤ ε.

Indeed, the first inequality holds since γk satisfies the last integral constraint of prob-
lem (10) and f satisfies the growth condition of Theorem 4. The second inequality follows
from the triangle inequality. The last two inequalities, finally, follow from (16) and the
fact that d(xkN+1, yN ) > R. We thus conclude that (15) indeed holds.
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